Team:UCL/Humans/Story

From 2014.igem.org

(Difference between revisions)
Line 3: Line 3:
<div id="BPimagewrapperHeader">
<div id="BPimagewrapperHeader">
-
<img src="https://static.igem.org/mediawiki/2014/4/43/UCLAboutHeader.jpg" width="100%" height="100%" alt="About Our Project">
+
<img src="https://static.igem.org/mediawiki/2014/0/03/HPStory_Header.png" width="100%" height="100%" alt="The Human Practice Story">
</div>
</div>

Revision as of 18:54, 12 October 2014

Goodbye Azodye UCL iGEM 2014

The Human Practice Story

The Human Practice Story

This year UCL's iGEM team has addressed the subject of Policy and Practice with three central questions. The answers to which not only gave us valuable insight, but also guided our research to best benefit the world.



What does the Industry need?

In a bid to further understand the industry requirements for an Azo Dye remediation project three of our team ventured to the head office of The Ecological and Toxicological Association of Dyes and Organic Pigments Manufacturers (ETAD) in Basel, Switzerland. We met with their Chief Director Walter Hoffman along with Research and Development Directors from Bezema and Huntsman Dyeing Companies; Georg Roentgen and Dr Stefan Ehrenberg respectively.




We came out from the meeting with a much deeper understanding of the factory dyeing processes, current remediation strategies and the requirements of the entire industry. The table below summarises what we learned and how it changed the direction of our project.


Composition of dye effluent: Effluent not only contains azo dyes that we can toxic to E.coli upon remediation but Copper and Chromium salts in addition. From the knowledge we set out plans to test the toxicity of different concentrations of copper and chromium salts on E.coli. If the salts proved toxic to E.coli we planned to use an overexpression construct for the Copper resistance proteins CusA and CusB as the first step towards solving this problem. We also planned to compare the survivability of our recombinant E.coli strain in textile industry effluent and assess further modifications that would improve our organisms effectiveness.
Sulphonated azo dyes: In an effort to use less water in the dyeing process, companies are leaning towards the use of sulphonated dyes which cannot be easily broken down by normal factory methods From this discussion we decided to create a new BioBrick part for the enzyme Lignin Peroxidase which has previously been shown to aid in the breakdown of sulphonated azo dyes

Exploring Thames Water

*Bez Content*

How can we understand the impact of our project on a sociological scale?

Having already visited stakeholders from the dyeing industry to discuss the logistical aspects of our solution we decided to extend a hand to the rest of the stakeholders in the industry, as well as the general public. We gathered over 85 attendees from various specific industries including the general public and invited them to attend a seminar where we outlined the goals and technologies we were using. This presentation was then followed by a debate in an attempt to gather information about their thought and concerns about what we were doing. This debate centred around three key themes which we felt best reflected the concerns of the public in relation to the development of genetically modified organisms and synthetic biology.

  1. Are there better solutions to the problem than ours?
  2. Is it safe to use synthetic biology in the bioremediation of dyes?
  3. Whose responsibility is the problem?

The responses we acquired during the discussion lead our project to evolve to better fit society and industry stakeholder needs:


Question General Responses to consider Project Alterations in response
Are there better solutions to the problem than ours? Is it safe to use synthetic biology in the bioremediation of dyes? Whose responsibility is the problem?
Remove use of Azo Dyes altogether and use alternative dyeing methodology You can never know the future, you must move slowly in implementing such a plan. If there is an escape of the bacteria, you must stop them transferring DNA to other organisms or outcompeting beyond the current technology Everybody's; scientists, industry, lobbyists, the general public.
Collaboration with Bioartist Natsai Audrey to explore the possibility of Bacterial synthesised dyes Exploring implementation timelines at a factory level for future business plans. Creating a Xenobiological module within the project. Create #UncolourMeCurious short film to increase knowledge of the problem and hence increase likelihood of all parties knowing enough to take responsibility.

Industry (No. of Representatives)

Ethical Fashion (4), Textiles (11), Environmental/Sustainability Policy (4), Social Sciences and Ethics (3), Synthetic Biology/Engineering (32), Press (2), General Public (31)

Company Representation

Ethical Fashion Forum, Jack Wills, Aravore London, Central St Martins, Highams Park, Forum for the Future, University of Greenwich Law Dept, Global Water Forum, Environmental Industry Commission, UCL, University of Sussex, GamCare, University College London, Imperial College London, Guardian Newspaper, The Write Network


How do we engage the general public to understand the problem and the solution?

The #UncolourMeCurious Campaign

Our #UncolourMeCurious campaign was created so that awareness of the problem of azo dye pollution could spread hence breaking down the responsibility of the problem to anybody and everybody as suggested by our Citizen Synbio panel discussion. The #UncolourMeCurious campaign comprised of three fantastic art collaborations, a conceptual short film and social media campaign. This culminated in the #UncolourMeCurious Exhibition with works from numerous BioArt collaborators including Central St Martins, Natsai Audrey, Linden Gledhill and The Slade. On the opening night the spread of attendees ranged though the Ethical Fashion Forum, Jack Wills, Guardian Newspaper and many more. A more detailed attendee description can be found here


insert entire gallery of exhibit here

Central St Martins - move to collaborators page?

We approached the Central St Martins textiles department with our ideas of synthetic biology and science and they asked ‘When does technology like this become accessible?’ This question yielded a set of beautiful visualisation of the way our bacteria could be used to create art if controlled by light. These pieces by second year Textiles Design BA students Cameo Bondy and Barbara Czepiel exhibit the textiles that could be created if our bacteria contained optogenetic biobricks that switched their dye breakdown capacities on and off via light cues.

Natsai Audrey

*Pamela Content*

Linden Gledhill

*Edo Content*

The Slade

For the exhibition The Slade School of Art provided us with Pigment Cases outlining the history of dyes. They illustrated how dyeing technology has moved through the ages and allowed the public to witness how far we have come.

*Pictures of the pigment library with interactive links to joy's timetable

#UncolourMeCurious Conceptual Short Film

We knew that the exhibit would engage the public but we asked ourselves, what about those who do not live close enough to visit and learn about this issue? To achieve this we created the conceptual art film #UncolourMeCurious which has been entered into the Vienna Biofiction Film Festival competition.


Social Media

The short film was part of our social media campaign to try and raise awareness across the globe about the problem of Azo Dye toxicity. We took to twitter and facebook with the hashtag #UncolourMeCurious in order to communicate with the world of fashion and textiles that something had to be done. During the campaign we reached an average of 673 people on twitter per day and often more:

*Insert Gallery of Tweets*

We also reach over *insert super awesome number* via the short film as posted on youtube in over *insert super awesome number* countries of the world.

*Insert picture of super awesome analytics from youtube*

Contact Us

University College London
Gower Street - London
WC1E 6BT
Biochemical Engineering Department
Phone: +44 (0)20 7679 2000
Email: ucligem2014@gmail.com

Follow Us