Team:EPF Lausanne/Overview

From 2014.igem.org

(Difference between revisions)
 
(181 intermediate revisions not shown)
Line 11: Line 11:
<!-- MENU -->
<!-- MENU -->
-
 
+
  <nav class="navbar navbar-default navbar_alt" role="navigation">
-
<nav class="navbar navbar-default navbar_alt" role="navigation">
+
    <div class="container-fluid">
-
  <div class="container-fluid">
+
      <!-- Brand and toggle get grouped for better mobile display -->
-
    <!-- Brand and toggle get grouped for better mobile display -->
+
      <div class="navbar-header">
-
    <div class="navbar-header">
+
        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
-
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
+
         <span class="sr-only">Toggle navigation</span>
         <span class="sr-only">Toggle navigation</span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
-
      </button>
+
        </button>
-
      <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
+
        <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
-
</a>
+
      </a>
     </div>
     </div>
-
 
     <!-- Collect the nav links, forms, and other content for toggling -->
     <!-- Collect the nav links, forms, and other content for toggling -->
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
       <ul class="nav navbar-nav navbar-right">
       <ul class="nav navbar-nav navbar-right">
-
    <div class="nav-collapse">
+
        <div class="nav-collapse">
-
      <ul class="nav">
+
          <ul class="nav">
-
        <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
-
        <li class="dropdown">
+
            <li class="dropdown">
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
              <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Project <span class="caret"></span></a>
-
          <ul class="dropdown-menu" role="menu">
+
              <ul class="dropdown-menu" role="menu">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview" class="active">Overview</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
-
 
+
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
 
+
              -->          </ul>
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
            </li>
-
-->          </ul>
+
            <li class="dropdown">
-
        </li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
-
 
+
              <ul class="dropdown-menu" role="menu">
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
-
      <li class="dropdown">
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
-
          <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
-
          <ul class="dropdown-menu" role="menu">
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
              </ul>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
            </li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts" class="active">Parts</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practices <span class="caret"></span></a>
-
          </ul>
+
              <ul class="dropdown-menu" role="menu">
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
-
        <li class="dropdown">
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
+
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
          <ul class="dropdown-menu" role="menu">
+
              -->          </ul>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
+
            </li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
-
 
+
              <ul class="dropdown-menu" role="menu">
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
-
-->          </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
-
      <li class="dropdown">
+
              </ul>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
+
            </li>
-
          <ul class="dropdown-menu" role="menu">
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
+
              <ul class="dropdown-menu" role="menu">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
-
          </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
-
 
+
              </ul>
-
      <li class="dropdown">
+
            </li>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
+
          </div>
-
          <ul class="dropdown-menu" role="menu">
+
        </ul>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
+
        </div><!-- /.navbar-collapse -->
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
+
        </div><!-- /.container-fluid -->
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
+
      </nav>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
+
-
          </ul>
+
-
        </li>
+
-
    </div>
+
-
      </ul>
+
-
 
+
-
    </div><!-- /.navbar-collapse -->
+
-
  </div><!-- /.container-fluid -->
+
-
</nav>
+
-
 
+
<!-- END MENU -->
<!-- END MENU -->
 +
<!-- ABSTRACT -->
-
<!-- ABSTRACT -->
 
<div class="container">
<div class="container">
Line 106: Line 94:
<ol class="breadcrumb breadcrumb-arrow">
<ol class="breadcrumb breadcrumb-arrow">
                   <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
                   <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
-
                   <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-star"></i> Achievements <b class="caret"></b></a>
+
                   <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-cog"></i> Project <b class="caret"></b></a>
                     <ul class="dropdown-menu">
                     <ul class="dropdown-menu">
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
                     </ul>
                     </ul>
                   </li>
                   </li>
-
                   <li class="active"><span><i class="glyphicon glyphicon-list-alt"></i> Parts</span></li>
+
                   <li class="active"><span><i class="glyphicon glyphicon-picture"></i> Overview</span></li>
                 </ol>
                 </ol>
</div>
</div>
Line 123: Line 113:
<div class="whitebg box">
<div class="whitebg box">
 +
<!-- PROJECT -->
 +
<div class="align-justify">
-
<!-- PARTS -->
+
<h1 class="cntr">Overview</h1>
 +
<h2 class="section-heading" id="title_intro">Introduction</h2>
 +
<p class="lead">
-
<div id="parts">
+
<!--Our team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently.-->
-
<div class="align-left">
+
-
<h1 class="cntr">PARTS</h1>
+
Biological responses can be quick and precise! This is the message that our team wants to convey. With this in mind, our team brought forward a novel idea:
 +
<br />
 +
<p style="border-style:solid; border-color:#120A2A;padding: 25px; background-color:#A5D2DA">
 +
Combining Protein Complementation techniques with biosensors and microfluidics allows fast spatiotemporal analysis of bacterial/yeast responses to stimuli.
 +
</p>
 +
<br/>
-
<section id="dna">
 
-
<h3 class="section-heading">DNA parts submitted by the 2014 EPFL iGEM team</h3>
 
-
<p class="lead">
 
-
Our team submitted a total of 55 Biobricks (biobrick 51 does not exist).</p>
 
-
<p class="lead">
 
-
In addition, 4 microfluidic designs have also been submitted to the registry.</p>
 
-
<table class="table table-striped table-hover" id="biobricks_list">
 
-
  <tr>
 
-
    <th>Biobrick</th>
 
-
    <th>What it is</th>
 
-
    <th>Function</th>
 
-
    <th>Why do we use it?</th>
 
-
    <th>Group</th>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486000</td>
 
-
    <td>CpxR coding sequence</td>
 
-
    <td>Transcription factor</td>
 
-
    <td>To make most of our biobricks!</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486001</td>
 
-
    <td>CpxR under arabinose promoter</td>
 
-
    <td>Treanscription factor</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486002</td>
 
-
    <td>PAra + sfGFP CpxR [Nterm]</td>
 
-
    <td>Expresses fused protein</td>
 
-
    <td>Test CpxR expression & Ara promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486003</td>
 
-
    <td>Flexible linker</td>
 
-
    <td>Attaches two proteins together</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486004</td>
 
-
    <td>Flexible linker</td>
 
-
    <td>Attaches two proteins together</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486005</td>
 
-
    <td>PAra + CpxR sfGFP [Cterm]</td>
 
-
    <td>Expresses fused protein</td>
 
-
    <td>Test CpxR expression & Ara promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486006</td>
 
-
    <td>IFP[1]</td>
 
-
    <td>N terminus of split IFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486007</td>
 
-
    <td>IFP[2]</td>
 
-
    <td>C terminus of split IFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486008</td>
 
-
    <td>CxpR & Split IFP1.4 [Cterm + Cterm]</td>
 
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486009</td>
 
-
    <td>CxpR & Split IFP1.4 [Nterm + Nterm]</td>
 
-
    <td>Two CpxR CDS, each N terminus attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486010</td>
 
-
    <td>CxpR & Split IFP1.4 [Nterm + Cterm]</td>
 
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486011</td>
 
-
    <td>CxpR & Split IFP1.4 [Cterm + Nterm]</td>
 
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486012</td>
 
-
    <td>CpxR + IFP[1]</td>
 
-
    <td>CpxR with the Nterm moiety of IFP attached at its C terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486013</td>
 
-
    <td>CpxR + IFP[2]</td>
 
-
    <td>CpxR with the Cterm moiety of IFP attached at its C terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486014</td>
 
-
    <td>IFP[1] + CpxR</td>
 
-
    <td>CpxR with the Nterm moiety of IFP attached at its N terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486015</td>
 
-
    <td>IFP[2] + CpxR</td>
 
-
    <td>CpxR with the Cterm moiety of IFP attached at its N terminus</td>
 
-
    <td>Intermediate & control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486016</td>
 
-
    <td>fLuc[1]</td>
 
-
    <td>N terminus moiety of the firefly luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486017</td>
 
-
    <td>fLuc[2]</td>
 
-
    <td>C terminus moiety of the firefly luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486018</td>
 
-
    <td>PAra + fLuc[1] + fLuc[2]</td>
 
-
    <td>Split firefly luciferase under arabinose promoter</td>
 
-
    <td>Control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486019</td>
 
-
    <td>rLuc[1]</td>
 
-
    <td>C terminus moiety of the renilla luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486020</td>
 
-
    <td>rLuc[2]</td>
 
-
    <td>N terminus moiety of the renilla luciferase</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486021</td>
 
-
    <td>PAra + rLuc[1] + rLuc[2]</td>
 
-
    <td>Split renilla luciferase under arabinose promoter</td>
 
-
    <td>Control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486022</td>
 
-
    <td>rLuc</td>
 
-
    <td>Full renilla luciferase</td>
 
-
    <td>Control</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486023</td>
 
-
    <td>Yeast sfGFP</td>
 
-
    <td>Superfolder GFP for yeast cells</td>
 
-
    <td>Reporter</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486024</td>
 
-
    <td>Kan</td>
 
-
    <td>Yeast kanamycin resistance gene</td>
 
-
    <td>Selection marker</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486025</td>
 
-
    <td>ADH1 terminator</td>
 
-
    <td>Terminator</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486026</td>
 
-
    <td>Yeast sfGFP + Kan</td>
 
-
    <td>Yeast sfGFP attached to the yeast kanamycin resistance gene</td>
 
-
    <td>Control the expression of pbs2</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486027</td>
 
-
    <td>rLuc + Kan</td>
 
-
    <td>Renilla luciferase attached to the kanamycin resistance gene</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486028</td>
 
-
    <td>Yeast sfGFP[1]</td>
 
-
    <td>N terminal moiety of split yeast sfGFP</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486029</td>
 
-
    <td>sfGFP[1] + kan</td>
 
-
    <td>Nterm moiety of split yeast sfGFP attached to yeast kanamycin resistance gene</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486030</td>
 
-
    <td>rLuc[1] + kan</td>
 
-
    <td>Nterm moiety of split renilla luciferase attached to yeast kanamycin resistance gene</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486031</td>
 
-
    <td>Ura</td>
 
-
    <td>CDS for Uracil (yeast selective purposes)</td>
 
-
    <td>Confer resistance to Uracil-deprived medium</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486032</td>
 
-
    <td>Yeast sfGFP + Ura</td>
 
-
    <td>Yeast sfGFP attached to the Uracil CDS</td>
 
-
    <td>Control the expression of hog1</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486033</td>
 
-
    <td>rLuc + Ura</td>
 
-
    <td>Renilla luciferase attached to the Uracil CDS</td>
 
-
    <td>Control the expression of hog1</td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486034</td>
 
-
    <td>yeast sfGFP[2]</td>
 
-
    <td>C terminal moiety of split the yeast sfGFP</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486035</td>
 
-
    <td>yeast sfGFP[2] + Ura</td>
 
-
    <td>Cterm moiety of split yeast sfGFP attached to the Uracil CDS</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
<tr>
 
-
    <td class="biobrick_name">BBa_K1486036</td>
 
-
    <td>rLuc[2] + Ura</td>
 
-
    <td>Cterm moiety of split renilla luciferase attached to the Uracil CDS</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486037</td>
 
-
    <td>linker</td>
 
-
    <td>Attaches two proteins together</td>
 
-
    <td> </td>
 
-
    <td>Yeast</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486038</td>
 
-
    <td>sfGFP[1]</td>
 
-
    <td>N terminus moiety of split superfolder GFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486039</td>
 
-
    <td>sfGFP[2]</td>
 
-
    <td>C terminus moiety of split superfolder GFP</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486040</td>
 
-
    <td>sfGFP[1] + CpxR</td>
 
-
    <td>N terminus moiety of split sfGFP attached to CpxR</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486041</td>
 
-
    <td>sfGFP[2] + CpxR</td>
 
-
    <td>C terminus moiety of split sfGFP attached to CpxR</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486042</td>
 
-
    <td>LZip</td>
 
-
    <td>Monomer of leucine zipper TF</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486043</td>
 
-
    <td>LZip + split rLuc</td>
 
-
    <td>Two Leucine Zipper monomers, each attached to a different split rLuc moiety</td>
 
-
    <td>Control for split rLuc assays</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486044</td>
 
-
    <td>mut IFP[1]</td>
 
-
    <td>Biobrick-compatible IFP[1]</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486045</td>
 
-
    <td>mut IFP[2]</td>
 
-
    <td>Biobrick-compatible IFP[2]</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486046</td>
 
-
    <td>CpxR promoter FW</td>
 
-
    <td>CpxR binding-region in forward direction</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486047</td>
 
-
    <td>CpxR promoter RV</td>
 
-
    <td>CpxR binding-region in reverse direction</td>
 
-
    <td> </td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486048</td>
 
-
    <td>CpxR reporter</td>
 
-
    <td>Calgary's CpxR reporter repaired (sequence was missing)</td>
 
-
    <td>To see when CpxR is active</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486049</td>
 
-
    <td>CpxR promoter FW + RFP</td>
 
-
    <td>Reporter of CpxR</td>
 
-
    <td>Test the direction of the complete CpxR promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486050</td>
 
-
    <td>CpxR promoter RV + RFP</td>
 
-
    <td>Reporter of CpxR</td>
 
-
    <td>Test the direction of the complete CpxR promoter</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486052</td>
 
-
    <td>Spacer</td>
 
-
    <td>40 bases placed between constructs</td>
 
-
    <td>Separate two constructs in the same plasmid</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486053</td>
 
-
    <td>Linker</td>
 
-
    <td>10 amino-acid linker</td>
 
-
    <td>Attach CheY/Z to split luciferases</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486054</td>
 
-
    <td>CheY/CheZ rLuc</td>
 
-
    <td>CheY and CheZ, each attached to a moiety of split renilla luciferase</td>
 
-
    <td>Positive control for the split rLuc</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486055</td>
 
-
    <td>CheY/CheZ fLuc</td>
 
-
    <td>CheY and CheZ, each attached to a moiety of split firefly luciferase</td>
 
-
    <td>Positive control for the split fLuc</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td class="biobrick_name">BBa_K1486056</td>
 
-
    <td>CxpR & Split mut IFP1.4 [Cterm + Cterm]</td>
 
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of the biobrick-compatible IFP</td>
 
-
    <td>Characterize CpxR dimerization</td>
 
-
    <td>Bacteria</td>
 
-
  </tr>
 
-
</table>
 
-
</section>
+
<!--
 +
Biological responses can be quick! This is the message that the 2014 EPFL iGEM team want to convey.
 +
 
 +
<br /><br /><i>The BioPad project is intended to be a solid proof-of-concept of the combination of biosensors with protein complementation techniques to achieve fast spatiotemporal analysis of bacterial or yeast response to mechanical stimuli.</i>
 +
</p>
 +
-->
 +
 
-
<br /><br />
 
-
<section id="microfluidics">
 
-
<h3 class="section-heading">Microfluidics parts (chips created)</h3>
 
<p class="lead">
<p class="lead">
-
Our team designed and made 4 microfluidic chips. At the beginning, we also used the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a>.</p>
+
Our team explored this hypothesis by engineering two stress related pathways in <i>E. coli</i> and <i>S. cerevisiae</i> with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch-responsive bacteria/yeast, and a signal detector. Learn more about <a href="#howitworks">how the BioPad works !</a> </p>
-
<p class="lead">When designing the chips, the team took into account the future users and the current iGEM classification of parts. We considered it best to construct our chips as composite microfluidic parts, so their sub-parts could be used and combined in multiple ways. The flow and control layers can be separated and reused, as well as all the basic structures (chamber + connecting channel), nodes, array parts,...</p>
+
-
<!-- send all lines here: https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing -->
 
-
<table class="table table-striped table-hover" id="chips_list">
 
-
  <tr>
 
-
    <th>Name</th>
 
-
    <th>Main Function</th>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>MITOMI modified</td>
 
-
    <td>By using the MITOMI chip as a template, we designed our first chip that could squish the cells in the chamber.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>SmashColi</td>
 
-
    <td>To be able to separate the chip in 4 different compartments and apply 4 different pressures on each row of chambers.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>BioPad</td>
 
-
    <td>A large and simple microfluidic chip containing 6400 chambers in which the cells are contained in. Each chamber acts as a pixel for the BioPad project.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>CleanColi</td>
 
-
    <td>As a result of our Safety page, we decided to create a chip that is able to seal the bacteria in the chip, preventing them to leave the chip.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>FilterColi</td>
 
-
    <td>To successfully immerse cells in a certain solution, this chip was designed to flow in the new medium in the chambers instead of doing it by diffusion.</td>
 
-
  </tr>
 
-
</table>
 
-
</section>
 
 +
<!--
 +
<p class="lead">
 +
The pathway engineered in <i>E. coli</i>, the Cpx Pathway, is a two-component (CpxA and CpxR) regulatory system responsive to envelope stress. It controls the expression of "survival" genes whose products act in the periplasm to maintain membrane integrity. CpxA intermembrane kinase activates and autophosphorylates when sensing misfolded protein (due to stress for example). CpxA phosphorylates CpxR which homodimerizes, acting as a transcription factor. A full description of the pathway is available <a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Envelope Stress Responsive Bacteria page !</a></p>
 +
 +
-->
 +
 +
<p class="lead">
 +
The pathway engineered in <i>E. coli</i>, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available <a  target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria#cpx">here.</a>
 +
<br/>
 +
In <i>S. cerevisiae</i> we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">here.</a>
 +
</p>
-
<br /><br />
+
<br/>
-
</div>
+
 
 +
<div  class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" data-lightbox="cpxr" data-title="CpxR-HOG">
 +
<img src="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" alt="touch response" class="img-responsive img-border" /></a>
</div>
</div>
 +
<br /><br /><br/>
 +
 +
<div class="pull-left img-left">
 +
<a href="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" data-lightbox="image-1" data-title="EPFL microfluidic chips"><img src="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" width="250" class="img-border"></a>
 +
<figcaption class="cntr">EPFL microfluidic chips</figcaption>
</div>
</div>
-
</div>
+
<p class="lead">
-
<div class="col col-md-3">
+
Our project also includes an extensive <b>microfluidics section</b>. Our self designed chips helped us improve precision, safety and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out <a  target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">this link.</a></p>
-
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
+
 
-
    <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="400">
+
<div class="pull-right img-right">
-
        <li class="active"><a href="#dna">DNA Parts</a></li>
+
<img src="http://www.raspberrypi.org/wp-content/uploads/2011/07/RaspiModelB.png" alt="first" width="200" class="img-border">
-
        <li><a href="#microfluidics">Microfluidics Parts</a></li>
+
<figcaption class="cntr">Raspberry Pi</figcaption>
-
    </ul>
+
-
</nav>
+
</div>
</div>
-
</div>
+
<p class="lead">
-
</div>
+
<br />
-
<!-- END ABSTRACT -->
+
Last but not least, we designed a <b>novel signal detector</b>! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning the BioPad detector can be found <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">here.</a>
 +
<br /></p>
-
<script type="text/javascript">
+
<!--
-
    $(document).ready(function() {
+
  <h2 id="CpxPathway">The Cpx Pathway in <i> E.Coli </i></h2>
-
      $('#biobricks_list tr').click(function (e) {
+
<br />
-
        text = $(this).children('td.biobrick_name').first().text();
+
-
        if (text != '') {
+
-
          return window.open('http://parts.igem.org/Part:' + text, '_blank');
+
-
        }
+
-
      });
+
-
    });
+
-
</script>
+
-
</html>
+
-
{{CSS/EPFL_bottom}}
+
-
{{CSS/EPFL_head}}
+
-
<html>
+
-
<style>
+
-
#contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki settings --*/
+
-
</style>
+
-
<!--  here ends the section that changes the default wiki template to a white full width background -->
 
 +
<!-- CpxA-CpxR PATHWAY DESCRIPTION -->
 +
<!--
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/6/62/Cpx_pathway_2_far_2.jpg" alt="Cpx_pathway_description_diagram" class="img-responsive">
 +
</div>
 +
-->
-
<!-- MENU -->
+
<!--
 +
<p class="lead">
 +
The natural function of the Cpx two component regulatory system in bacteria is to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extracytoplasmic stresses. The Cpx two component regulatory system belongs to the class I histidine kinases and includes three main proteins: CpxA, CpxR, and CpxP. For more detailed information about the Cpx pathway check out our <a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Envelope Stress Responsive Bacteria page !</a></p>
 +
<br />
-
<nav class="navbar navbar-default navbar_alt" role="navigation">
+
-->
-
  <div class="container-fluid">
+
-
    <!-- Brand and toggle get grouped for better mobile display -->
+
-
    <div class="navbar-header">
+
-
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
+
-
        <span class="sr-only">Toggle navigation</span>
+
-
        <span class="icon-bar"></span>
+
-
        <span class="icon-bar"></span>
+
-
        <span class="icon-bar"></span>
+
-
      </button>
+
-
      <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
+
-
</a>
+
-
    </div>
+
-
    <!-- Collect the nav links, forms, and other content for toggling -->
 
-
    <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 
-
      <ul class="nav navbar-nav navbar-right">
 
-
    <div class="nav-collapse">
 
-
      <ul class="nav">
 
-
        <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
 
-
        <li class="dropdown">
 
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
 
-
          <ul class="dropdown-menu" role="menu">
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
 
 +
<!--
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/4/41/Cpx_pathway_description_EPFL.jpg" width="70%" alt="Cpx_pathway_description">
 +
</div>
 +
-->
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
<br />
-
-->          </ul>
+
-
        </li>
+
 +
<hr />
 +
<br />
-
      <li class="dropdown">
 
-
          <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
 
-
          <ul class="dropdown-menu" role="menu">
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts" class="active">Parts</a></li>
 
-
          </ul>
 
-
        </li>
 
-
        <li class="dropdown">
+
<h2 class="section-heading" id="howitworks">How the BioPad works - <i>E. coli</i></h2>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
+
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
+
-
<!--             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
<div class="pull-right img-right">
-
-->         </ul>
+
<a href="https://static.igem.org/mediawiki/2014/b/b7/Puce_petit.jpg" data-lightbox="image-0" data-title="A potential BioPad">
-
        </li>
+
<img src="https://static.igem.org/mediawiki/2014/b/b7/Puce_petit.jpg" alt="Potential biopad" height="200" class="img-border" /></a>
 +
<figcaption class="cntr">A potential BioPad</figcaption>
 +
</div>
-
      <li class="dropdown">
+
<p class="lead">
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
+
Our BioPad is a self-designed PDMS microfluidic chip, made of thousands of compartments representing “pixels”. Each 300μm x 300μm x 50μm compartment contains a few layers of <i>E. coli</i>. When the surface of the chip is touched, a deformation on the chip - and thus of the compartments – leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.<br/> <br/></p>
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
+
-
          </ul>
+
-
        </li>
+
-
      <li class="dropdown">
 
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
 
-
          <ul class="dropdown-menu" role="menu">
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
 
-
          </ul>
 
-
        </li>
 
-
    </div>
 
-
      </ul>
 
-
    </div><!-- /.navbar-collapse -->
+
<p class="lead">
-
  </div><!-- /.container-fluid -->
+
-
</nav>
+
 +
The histidine kinase sensor CpxA auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR, resulting in its dimerization. We engineered the pathway, by fusing split reporter protein fragments to the CpxR (IFP1.4). This allows the two fragments to remain inactive until physical interaction of CpxR (stimulated by envelope stress) leads to the proper folding of IFP1.4  and reconstitution of its fluorescent properties. As the reconstitution of the split fragments of IFP1.4 are reversible, the system can be shutdown upon stress removal (CpxA changes conformation to become a phosphatase and induces CpxR’s dissociation).<br/> <br/>
 +
 +
The BioPad also includes a signal detector. This detector is composed of an inexpensive credit card-sized single-board computer called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light-emitting source. It identifies and processes the position of the light/fluorescence emitted by the BioPad. The information about the position of the light relative to chip is then used to control the associated electronic device. <br/>
-
<!-- END MENU -->
 
-
<!-- ABSTRACT -->
 
-
<div class="container">
 
-
<div class="box" id="boxbread">
 
-
<ol class="breadcrumb breadcrumb-arrow">
+
 
-
                  <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
+
<div class="cntr">
-
                  <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-star"></i> Achievements <b class="caret"></b></a>
+
<a href="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" data-lightbox="image-0" data-title="Fluorescence">
-
                    <ul class="dropdown-menu">
+
<img src="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" alt="touch bacteria" height="200" class="img-border" /></a>
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
-
                    </ul>
+
-
                  </li>
+
-
                  <li class="active"><span><i class="glyphicon glyphicon-list-alt"></i> Parts</span></li>
+
-
                </ol>
+
</div>
</div>
-
<div class="row">
+
<br />
-
<div class="col col-md-9">
+
<!--<hr />
 +
<br />
 +
  <h2 id="thehogpathway">The HOG Pathway</h2>
-
<div class="whitebg box">
 
-
<!-- PARTS -->
+
<p class="lead">The HOG (High Osmolarity Glycerol) pathway is a MAPK (Mitogen activated protein kinase) pathway which yeast cells use to coordinate intracellular activities to optimise survival and proliferation in not only hyper-osmotic stress but also heat shock, nitrogen stress and oxidative stress. It is represented below.</p>
 +
<br />
 +
<br />
 +
<img src="https://static.igem.org/mediawiki/2014/6/6d/Hog_pathway_copy.jpg" width="750" alt="HOG_pathway_description">
 +
<br />
 +
<p> The pathway includes five main proteins:</p>
 +
<ul style="padding-left:80px">
 +
<li><p class="lead">Sho1/Sln1 – Membrane proteins which are classed as STREs (STress Response Elements) which sense the stress and initiate the pathway</p></li>
 +
<li><p class="lead">Ste11 – The MAPKKK which phosphorylates PBS2</p></li>
 +
<li><p class="lead">PBS2 – The MAPKK which phosphorylates HOG1</p></li>
 +
<li><p class="lead">HOG1 – The MAPK which localizes to the nucleus upon phosphorylation and induces target gene transcription</p></li>
 +
</ul>
 +
<br>-->
 +
<br>
-
<div id="parts">
+
  <h2 id="howweengineered">Engineering the HOG pathway in <i>S. cerevisiae</i></h2>
-
<div class="align-left">
+
-
<h1 class="cntr">PARTS</h1>
 
 +
<p class="lead">
 +
<br/>
 +
The <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">HOG pathway</a> controls the response to osmotic stress in yeast cells.
 +
Like bacteria, our modified <i>S. cerevisiae</i> cells can be loaded into the PDMS microfluidic chips we have designed. Thus cells are confined in small compartments made of a soft material. When the surface of the chip is touched, it leads to a deformation of the chip and its chambers. Since the HOG pathway is reactive to turgor pressure, the mechanical pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.
 +
</p>
 +
 +
<div class="pull-left img-left" style="width:55%">
 +
<a href="https://static.igem.org/mediawiki/2014/7/7b/Schema_split.png" data-lightbox="img1" data-title="Figure of Hog1/Pbs2 split sfGFP and split rLuc">
 +
<img src="https://static.igem.org/mediawiki/2014/7/7b/Schema_split.png" alt="" class="img-border" style="width: 100%">
 +
</a>
 +
<figcaption class="cntr">Figure of Hog1/Pbs2 split sfGFP and split rLuc</figcaption>
 +
 +
</div>
-
<section id="dna">
 
-
<h3 class="section-heading">DNA parts submitted by the 2014 EPFL iGEM team</h3>
 
<p class="lead">
<p class="lead">
-
Our team submitted a total of 55 Biobricks (biobrick 51 does not exist).</p>
+
These two kinases were fused to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination. This allowed us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.
 +
</p>
 +
 
<p class="lead">
<p class="lead">
-
In addition, 4 microfluidic designs have also been submitted to the registry.</p>
+
The split sfGFP is irreversible and aimed to show the interaction between our two Pbs2 and Hog1 while we used the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioPad Detector is programmed to identify and process the light position and can transmit the information to a computer.
-
<table class="table table-striped table-hover" id="biobricks_list">
+
</p>
-
  <tr>
+
-
    <th>Biobrick</th>
+
-
    <th>What it is</th>
+
-
    <th>Function</th>
+
-
    <th>Why do we use it?</th>
+
-
    <th>Group</th>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486000</td>
+
-
    <td>CpxR coding sequence</td>
+
-
    <td>Transcription factor</td>
+
-
    <td>To make most of our biobricks!</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486001</td>
+
-
    <td>CpxR under arabinose promoter</td>
+
-
    <td>Treanscription factor</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486002</td>
+
-
    <td>PAra + sfGFP CpxR [Nterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486003</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486004</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486005</td>
+
-
    <td>PAra + CpxR sfGFP [Cterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486006</td>
+
-
    <td>IFP[1]</td>
+
-
    <td>N terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486007</td>
+
-
    <td>IFP[2]</td>
+
-
    <td>C terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486008</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486009</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each N terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486010</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486011</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486012</td>
+
-
    <td>CpxR + IFP[1]</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486013</td>
+
-
    <td>CpxR + IFP[2]</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486014</td>
+
-
    <td>IFP[1] + CpxR</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486015</td>
+
-
    <td>IFP[2] + CpxR</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486016</td>
+
-
    <td>fLuc[1]</td>
+
-
    <td>N terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486017</td>
+
-
    <td>fLuc[2]</td>
+
-
    <td>C terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486018</td>
+
-
    <td>PAra + fLuc[1] + fLuc[2]</td>
+
-
    <td>Split firefly luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486019</td>
+
-
    <td>rLuc[1]</td>
+
-
    <td>C terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486020</td>
+
-
    <td>rLuc[2]</td>
+
-
    <td>N terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486021</td>
+
-
    <td>PAra + rLuc[1] + rLuc[2]</td>
+
-
    <td>Split renilla luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486022</td>
+
-
    <td>rLuc</td>
+
-
    <td>Full renilla luciferase</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486023</td>
+
-
    <td>Yeast sfGFP</td>
+
-
    <td>Superfolder GFP for yeast cells</td>
+
-
    <td>Reporter</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486024</td>
+
-
    <td>Kan</td>
+
-
    <td>Yeast kanamycin resistance gene</td>
+
-
    <td>Selection marker</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486025</td>
+
-
    <td>ADH1 terminator</td>
+
-
    <td>Terminator</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486026</td>
+
-
    <td>Yeast sfGFP + Kan</td>
+
-
    <td>Yeast sfGFP attached to the yeast kanamycin resistance gene</td>
+
-
    <td>Control the expression of pbs2</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486027</td>
+
-
    <td>rLuc + Kan</td>
+
-
    <td>Renilla luciferase attached to the kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486028</td>
+
-
    <td>Yeast sfGFP[1]</td>
+
-
    <td>N terminal moiety of split yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486029</td>
+
-
    <td>sfGFP[1] + kan</td>
+
-
    <td>Nterm moiety of split yeast sfGFP attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486030</td>
+
-
    <td>rLuc[1] + kan</td>
+
-
    <td>Nterm moiety of split renilla luciferase attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486031</td>
+
-
    <td>Ura</td>
+
-
    <td>CDS for Uracil (yeast selective purposes)</td>
+
-
    <td>Confer resistance to Uracil-deprived medium</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486032</td>
+
-
    <td>Yeast sfGFP + Ura</td>
+
-
    <td>Yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486033</td>
+
-
    <td>rLuc + Ura</td>
+
-
    <td>Renilla luciferase attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486034</td>
+
-
    <td>yeast sfGFP[2]</td>
+
-
    <td>C terminal moiety of split the yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486035</td>
+
-
    <td>yeast sfGFP[2] + Ura</td>
+
-
    <td>Cterm moiety of split yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486036</td>
+
-
    <td>rLuc[2] + Ura</td>
+
-
    <td>Cterm moiety of split renilla luciferase attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486037</td>
+
-
    <td>linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486038</td>
+
-
    <td>sfGFP[1]</td>
+
-
    <td>N terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486039</td>
+
-
    <td>sfGFP[2]</td>
+
-
    <td>C terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486040</td>
+
-
    <td>sfGFP[1] + CpxR</td>
+
-
    <td>N terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486041</td>
+
-
    <td>sfGFP[2] + CpxR</td>
+
-
    <td>C terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486042</td>
+
-
    <td>LZip</td>
+
-
    <td>Monomer of leucine zipper TF</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486043</td>
+
-
    <td>LZip + split rLuc</td>
+
-
    <td>Two Leucine Zipper monomers, each attached to a different split rLuc moiety</td>
+
-
    <td>Control for split rLuc assays</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486044</td>
+
-
    <td>mut IFP[1]</td>
+
-
    <td>Biobrick-compatible IFP[1]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486045</td>
+
-
    <td>mut IFP[2]</td>
+
-
    <td>Biobrick-compatible IFP[2]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486046</td>
+
-
    <td>CpxR promoter FW</td>
+
-
    <td>CpxR binding-region in forward direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486047</td>
+
-
    <td>CpxR promoter RV</td>
+
-
    <td>CpxR binding-region in reverse direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486048</td>
+
-
    <td>CpxR reporter</td>
+
-
    <td>Calgary's CpxR reporter repaired (sequence was missing)</td>
+
-
    <td>To see when CpxR is active</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486049</td>
+
-
    <td>CpxR promoter FW + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486050</td>
+
-
    <td>CpxR promoter RV + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486052</td>
+
-
    <td>Spacer</td>
+
-
    <td>40 bases placed between constructs</td>
+
-
    <td>Separate two constructs in the same plasmid</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486053</td>
+
-
    <td>Linker</td>
+
-
    <td>10 amino-acid linker</td>
+
-
    <td>Attach CheY/Z to split luciferases</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486054</td>
+
-
    <td>CheY/CheZ rLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split renilla luciferase</td>
+
-
    <td>Positive control for the split rLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486055</td>
+
-
    <td>CheY/CheZ fLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split firefly luciferase</td>
+
-
    <td>Positive control for the split fLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486056</td>
+
-
    <td>CxpR & Split mut IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of the biobrick-compatible IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
 
-
<br /><br />
+
<hr>
-
<section id="microfluidics">
+
<h2 class="section-heading" id="thebiopad">The BioPad Detector</h2>
-
<h3 class="section-heading">Microfluidics parts (chips created)</h3>
+
<p class="lead">
<p class="lead">
-
Our team designed and made 4 microfluidic chips. At the beginning, we also used the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a>.</p>
 
-
<p class="lead">When designing the chips, the team took into account the future users and the current iGEM classification of parts. We considered it best to construct our chips as composite microfluidic parts, so their sub-parts could be used and combined in multiple ways. The flow and control layers can be separated and reused, as well as all the basic structures (chamber + connecting channel), nodes, array parts,...</p>
 
-
<!-- send all lines here: https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing -->
+
<!-- ENGINEERING DETECTOR -->
-
<table class="table table-striped table-hover" id="chips_list">
+
 
-
  <tr>
+
The signals induced by the BioPad are then processed by our self designed detection system: the BioPad Detector. The BioPad Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioPad Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioPad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioPad.
-
    <th>Name</th>
+
-
    <th>Main Function</th>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>MITOMI modified</td>
+
-
    <td>By using the MITOMI chip as a template, we designed our first chip that could squish the cells in the chamber.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>SmashColi</td>
+
-
    <td>To be able to separate the chip in 4 different compartments and apply 4 different pressures on each row of chambers.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>BioPad</td>
+
-
    <td>A large and simple microfluidic chip containing 6400 chambers in which the cells are contained in. Each chamber acts as a pixel for the BioPad project.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>CleanColi</td>
+
-
    <td>As a result of our Safety page, we decided to create a chip that is able to seal the bacteria in the chip, preventing them to leave the chip.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>FilterColi</td>
+
-
    <td>To successfully immerse cells in a certain solution, this chip was designed to flow in the new medium in the chambers instead of doing it by diffusion.</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
+
 +
</p>
-
<br /><br />
+
<div class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/b/bd/IMG_4154.JPG" data-lightbox="raspberry" data-title="the Raspberry Pi with a microfluidic chip on the lens"><img src="https://static.igem.org/mediawiki/2014/8/88/DeviceRasp.png" alt="Device" class="img-border img-responsive" /></a>
 +
<figcaption class="cntr">the Raspberry Pi with a microfluidic chip on the lens</figcaption>
</div>
</div>
 +
</div>
</div>
 +
 +
<!-- END PROJECT -->
 +
</div>
</div>
Line 1,211: Line 329:
<div class="col col-md-3">
<div class="col col-md-3">
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
-
     <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="400">
+
     <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="600">
-
         <li class="active"><a href="#dna">DNA Parts</a></li>
+
         <li class="active"><a href="#title_intro">Introduction</a></li>
-
         <li><a href="#microfluidics">Microfluidics Parts</a></li>
+
         <li><a href="#howitworks">How the BioPad works - <i>E. coli</i></a></li>
 +
        <li><a href="#howweengineered">Engineering the HOG pathway in <i>S. cerevisiae</i></a> </li>
 +
        <li><a href="#thebiopad">The BioPad Detector</a></li>
 +
 
     </ul>
     </ul>
</nav>
</nav>
Line 1,219: Line 340:
</div>
</div>
</div>
</div>
 +
<!-- END ABSTRACT -->
<!-- END ABSTRACT -->
-
<script type="text/javascript">
 
-
    $(document).ready(function() {
 
-
      $('#biobricks_list tr').click(function (e) {
 
-
        text = $(this).children('td.biobrick_name').first().text();
 
-
        if (text != '') {
 
-
          return window.open('http://parts.igem.org/Part:' + text, '_blank');
 
-
        }
 
-
      });
 
-
    });
 
-
</script>
 
</html>
</html>
{{CSS/EPFL_bottom}}
{{CSS/EPFL_bottom}}

Latest revision as of 03:22, 18 October 2014

Overview

Introduction

Biological responses can be quick and precise! This is the message that our team wants to convey. With this in mind, our team brought forward a novel idea:

Combining Protein Complementation techniques with biosensors and microfluidics allows fast spatiotemporal analysis of bacterial/yeast responses to stimuli.


Our team explored this hypothesis by engineering two stress related pathways in E. coli and S. cerevisiae with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch-responsive bacteria/yeast, and a signal detector. Learn more about how the BioPad works !

The pathway engineered in E. coli, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available here.
In S. cerevisiae we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click here.





EPFL microfluidic chips

Our project also includes an extensive microfluidics section. Our self designed chips helped us improve precision, safety and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out this link.

first
Raspberry Pi


Last but not least, we designed a novel signal detector! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning the BioPad detector can be found here.




How the BioPad works - E. coli

Potential biopad
A potential BioPad

Our BioPad is a self-designed PDMS microfluidic chip, made of thousands of compartments representing “pixels”. Each 300μm x 300μm x 50μm compartment contains a few layers of E. coli. When the surface of the chip is touched, a deformation on the chip - and thus of the compartments – leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.

The histidine kinase sensor CpxA auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR, resulting in its dimerization. We engineered the pathway, by fusing split reporter protein fragments to the CpxR (IFP1.4). This allows the two fragments to remain inactive until physical interaction of CpxR (stimulated by envelope stress) leads to the proper folding of IFP1.4 and reconstitution of its fluorescent properties. As the reconstitution of the split fragments of IFP1.4 are reversible, the system can be shutdown upon stress removal (CpxA changes conformation to become a phosphatase and induces CpxR’s dissociation).

The BioPad also includes a signal detector. This detector is composed of an inexpensive credit card-sized single-board computer called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light-emitting source. It identifies and processes the position of the light/fluorescence emitted by the BioPad. The information about the position of the light relative to chip is then used to control the associated electronic device.



Engineering the HOG pathway in S. cerevisiae


The HOG pathway controls the response to osmotic stress in yeast cells. Like bacteria, our modified S. cerevisiae cells can be loaded into the PDMS microfluidic chips we have designed. Thus cells are confined in small compartments made of a soft material. When the surface of the chip is touched, it leads to a deformation of the chip and its chambers. Since the HOG pathway is reactive to turgor pressure, the mechanical pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.

Figure of Hog1/Pbs2 split sfGFP and split rLuc

These two kinases were fused to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination. This allowed us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.

The split sfGFP is irreversible and aimed to show the interaction between our two Pbs2 and Hog1 while we used the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioPad Detector is programmed to identify and process the light position and can transmit the information to a computer.


The BioPad Detector

The signals induced by the BioPad are then processed by our self designed detection system: the BioPad Detector. The BioPad Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioPad Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioPad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioPad.

Device
the Raspberry Pi with a microfluidic chip on the lens

Sponsors