Team:EPF Lausanne/Overview

From 2014.igem.org

(Difference between revisions)
 
(182 intermediate revisions not shown)
Line 1: Line 1:
{{CSS/EPFL_head}}
{{CSS/EPFL_head}}
<html>
<html>
-
  <style>
+
<style>
-
  #contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki settings --*/
+
#contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki settings --*/
-
  </style>
+
</style>
-
  <!--  here ends the section that changes the default wiki template to a white full width background -->
+
 
-
  <!-- MENU -->
+
<!--  here ends the section that changes the default wiki template to a white full width background -->
 +
 
 +
 
 +
 
 +
 
 +
<!-- MENU -->
   <nav class="navbar navbar-default navbar_alt" role="navigation">
   <nav class="navbar navbar-default navbar_alt" role="navigation">
     <div class="container-fluid">
     <div class="container-fluid">
Line 26: Line 31:
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
             <li class="dropdown">
             <li class="dropdown">
-
               <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
               <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Project <span class="caret"></span></a>
               <ul class="dropdown-menu" role="menu">
               <ul class="dropdown-menu" role="menu">
-
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
+
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview" class="active">Overview</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
Line 38: Line 43:
             </li>
             </li>
             <li class="dropdown">
             <li class="dropdown">
-
               <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
               <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
               <ul class="dropdown-menu" role="menu">
               <ul class="dropdown-menu" role="menu">
-
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results" class="active">Results</a></li>
+
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
Line 47: Line 52:
             </li>
             </li>
             <li class="dropdown">
             <li class="dropdown">
-
               <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
+
               <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practices <span class="caret"></span></a>
               <ul class="dropdown-menu" role="menu">
               <ul class="dropdown-menu" role="menu">
-
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
+
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
                 <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
Line 78: Line 83:
         </div><!-- /.container-fluid -->
         </div><!-- /.container-fluid -->
       </nav>
       </nav>
-
      <!-- END MENU -->
 
-
      <!-- ABSTRACT -->
 
-
      <div class="container">
 
-
        <div class="box" id="boxbread">
 
-
          <ol class="breadcrumb breadcrumb-arrow">
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
 
-
            <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-star"></i> Achievements <b class="caret"></b></a>
 
-
            <ul class="dropdown-menu">
 
-
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
 
-
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
 
-
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
 
-
            </ul>
 
-
          </li>
 
-
          <li class="active"><span><i class="glyphicon glyphicon-ok-sign"></i> Results</span></li>
 
-
        </ol>
 
-
      </div>
 
-
      <div class="row">
 
-
        <div class="col col-md-9">
 
-
          <div class="whitebg box">
 
-
            <!-- RESULTS -->
 
-
              <div class="align-left">
 
-
                <h1 class="cntr"> RESULTS </h1>
 
-
                <br /><br />
 
-
                <br /><br />
 
-
                <h2> <b><u>Characterisation of the spatiotemporal dynamics of the CpxR - split IFP 1.4 stress sensor </u> </b> </h2>
 
-
                <br /><br />
 
-
                <h3> <b>Experiment 1: </b> Promoter characterisation and folding ability of fused GFP to CpxR via 10 amino acid 2 x (GGGGS) flexible linker </h3>
 
-
                <p>This construct aimed to evaluate the expression and correct folding of our CpxR construct, and the function of the arabinose promoter in <i>E. coli</i> by fusing a superfolder GFP protein to the N terminus of CpxR. The sfGFP was chosen because of its higher intensity compared to GFP. </p>
 
-
                <p>Not knowing if CpxR would react the same way if sfGFP were attached to the N or C terminus, 2 biobricks were built, one with each of the orientations: <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486002">BBa_K1486002 (N terminus)</a> and <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486005">BBa_K1486005 (C terminus)</a>.
 
-
                </p>
 
-
                <p>
 
-
                An experiment on both possible CpxR - sfGFP orientations was launched to determine whether the proteins were well expressed and folded, and if the arabinose promoter worked well. It was also done on a microfluidic chip. The N terminus GFP biobrick results can be seen below; fluorescence intensity plotted against time.
 
-
                </p>
 
-
                <div class="cntr">
 
-
                  <a href="https://static.igem.org/mediawiki/2014/4/4c/Gfp_ara.png" data-lightbox="img1"><img src="
 
-
                  https://static.igem.org/mediawiki/2014/4/4c/Gfp_ara.png" width="50%"></a>
 
-
                  <p>Here are scans of the chip at t = 0 (no arabinose) and t = 300 min (Upper half has arabinose, lower half doesn't).</p>
 
-
                  <a href="https://static.igem.org/mediawiki/2014/0/0d/Truc2.png" data-lightbox="img1"><img src="https://static.igem.org/mediawiki/2014/0/0d/Truc2.png" width="30%"></a>
 
-
                  <a href="https://static.igem.org/mediawiki/2014/0/0d/Truc3.png" data-lightbox="img1"><img src="https://static.igem.org/mediawiki/2014/0/0d/Truc3.png" width="30%"></a>
 
-
                </div>
 
-
                <br/><br/><br/>
 
-
                <a href="https://static.igem.org/mediawiki/2014/f/f7/Truc5.png" data-lightbox="img1"><img src="https://static.igem.org/mediawiki/2014/f/f7/Truc5.png" class="pull-left img-left img-responsive img-border"></a>
 
-
                <br/><br/><br/><br/><br/>
 
-
                <p>The increasing standard deviation for the cells with arabinose can be explained as some chambers did not have a lot of cells and so there was a low intensity. As it can be seen in the following picture :</p>
 
-
                <p>These are chambers with arabinose in the medium, you can see that there are different cell density and thus different intensity in the chambers. Inducing a high standard deviation</p>
 
-
                <br/><br/><br/><br/>
 
-
                <h3><b>Experiment 2: </b>CpxR dimerization & Dimerization Orientation </h3>
 
-
                <p>
 
-
                <u>Introduction</u> <br />
 
-
                CpxR is the relay protein in the stress resonsive CpxAR two component regulatory system. It has been shown by split beta galactosidase assay that CpxR dimerizes when phosphorylated (activated) in yersinia pseudotuberculosis. Moreover, following other in vitro FRET studies, it was shown that <i>E. coli</i> CpxR interacted with itself.  We therefore hypothesised that dimerization would also be true in vivo in <i>E. coli</i>.</p>
 
-
                <p>
 
-
                <u>Aim</u> <br />
 
-
                This experiment aimed to determine if and how CpxR dimerised in vivo in <i>E. coli</i>. This experiment intended to get a first idea of the real-time temporal dynamics of the activation of CpxR (the cytoplasmic relay protein of the CpxA-R pathway) by KCl stress via CpxA (the periplasmic sensor protein of the CpxA-R pathway). This experiment is a first of its kind.
 
-
                </p>
 
-
                <p>
 
-
                <u>Methods</u> <br />
 
-
                To evaluate if and how CpxR dimerized under KCl stress, we built by gibson assembly four constructs with the various possible orientations that the split IFP1.4 fragments could have with CpxR: IFP[1] and IFP[2] on the N-terminus of CpxR, IFP[1] on the N-terminus of CpxR and IFP[2] on the C-terminus of CpxR, and finally IFP[1] and IFP[2] on the N-terminus of CpxR. The split IFP fragments were provided by the Michnick Lab, and the CpxR coding region was amplified by PCR from extracted <i>E. coli</i> genome (Bacterial Genomic Miniprep Kit from Sigma Aldrich). The protocol for stressing the cells and reading the fluorescence can be downloaded <a href="https://static.igem.org/mediawiki/2014/a/a5/EPFL_Protocol_IFP_stress_1.pdf">here</a>.
 
-
                </p>
 
-
                <p>
 
-
                <u>Results</u> <br />
 
-
                As seen in the graph bellow, induction of the signal was done at minute 24 (marked via a vertically spoted line). The construct with IFP fragments on the C-termina responded immediately to stress. In a fact we observed a 3 fold signal increase in 2 minutes. All other constructs we observed a low baseline signal non responsive to KCl stress. It is to be noted that the C-termina constructs always had higher signal levels than the other constructs. This leads us to believe that the PBS used to resuspend our cultures led to small levels of stress (the PBS we use does not contain KCl but traces of NaCl). The 30-fold signal increase from the baseline allows us to assert that our constructs responds to KCl stress.
 
-
                </p>
 
-
                <div class="cntr">
 
-
                  <img src="https://static.igem.org/mediawiki/2014/c/c2/KCL_Construct_Comparison.jpg" alt="Construct Comparison" class="img-responsive">
 
-
                </div>
 
-
                <p>
 
-
                <u>Discussion</u> <br />
 
-
                We successfully proved that CpxR dimerized in vivo and that dimerization led to close interaction of its C-terminus. This finding suggests that CpxR binds via its C-termina. This leads us to hypothesise that the CpxR dimerisation mechanisms is the same for other members of the highly conserved OmpR/PhoB subfamily. This hypothesis could allow the development of similar system that could the study other components of the OmpR/PhoB subfamily and thus lead to a new generation of highly senstitive and reactive biosensors.
 
-
                </p>
 
-
                <br /><br />
 
-
                <h3><b> Experiment 3: </b>Signal induction by various concentrations of KCl & signal shutdown by centrifugation </h3>
 
-
                <p>
 
-
                <u>Aim</u> <br />
 
-
                Having found that KCl was a good signal inducer for our signal, we decided to characterise our biobrick by testing if the signal could be modulated by various concentrations of KCl and if we were able to remove the signal by centrifugation and medium change.
 
-
                To do so, we read  our signal for 20 minutes without stress and then added KCl. At minute 144 we centrifuged our cells and replaced the medium with PBS to be able to get a shutdown of the signal.
 
-
                </p>
 
-
                <p>
 
-
                <u>Methods</u> <br />
 
-
                To evaluate if a modulation in KCl concentrations affected the intensity of the intensity of the fluorescent signal, and if a change in medium by centrifugation shutdown the signal; we read our signal on a plate reader for 20 minutes without stress and then added KCl. At minute 144 we centrifuged our cells and replaced the medium with PBS to be able to get a shutdown of the signal. The protocol for this experiment can be downloaded <a href="https://static.igem.org/mediawiki/2014/a/a5/EPFL_Protocol_IFP_stress_1.pdf">here</a>.
 
-
                </p>
 
-
                <p>
 
-
                <u>Results</u> <br />
 
-
                We successfully showed that increasing concentrations of KCl led to stronger signals up to a saturation concentration of about 80 mM KCl. Moreover we were able to shut the signal down, thus proving the reversibility of our system. These results prove the reversibility of the split IFP1.4 and suggest that real-time temporal dynamics analysis are possible for our system.
 
-
                </p>
 
-
                <div class="cntr">
 
-
                  <img src="https://static.igem.org/mediawiki/2014/6/61/KCL_titration_green_small_EPFL.jpg" alt="GA1 Shutdown" class="img-responsive">
 
-
                </div>
 
-
                <br /><br />
 
-
                <h3><b> Experiment 4: </b>Visualization of the the CpxR split IFP1.4 activation by KCl stress  </h3>
 
-
                <p>
 
-
                <u>Aim</u> <br />
 
-
                Having shown that we were able to monitor the temporal dynamics of our construct, we wanted to see if we were able to analyze the spatial dynamics by microscopy.
 
-
                </p>
 
-
                <p>
 
-
                <u>Methods</u> <br />
 
-
                To visualize the activation of our construct, we prepared cells as above for the previous plate-reader experiments, spread 10 µl on a glass slide added a coverslip and imaged them on a Zeiss Axioplan with a x100 objective and a APC (Cy5.5) filter. The pictures shown bellow were taken with a 5.1(s) integration time.
 
-
                </p>
 
-
                <p>
 
-
                <u>Results</u> <br />
 
-
                As seen in the pictures bellow, we were able to distinguish specific patterns within bacteria. We observed two phenotypes within our population: elongated and normal cells. The difference in these phenotypes was noticed in previous experiments and is most certainly due to the CpxR overexpression as we observed this also in non-stressed conditions. In the first phenotype (elongated) we were able to distinguish several bands that seem fairly uniformly distributed. In the second phenotype (normal) we observed a single band in the center of the bacteria. These observations led us to believe that CpxR might be involved in the division process of <i>E. coli</i> as it seems coherent for cells to slow down division upon stress. After looking into the literature, similar bands were visualizable in <i>E. coli</i> for factors related to septum formation such as ftsZ or pbpB. Nevertheless when comparing our patterns to the ftsZ and pbpB patterns, we noticed that CpxR might be localized in opposition to these factors. Further experiments comparing the sub-localization of CpxR and ftsZ could help the scientific community better understand how <i>E. coli</i> monitor division under various environments.
 
-
                </p>
 
-
                <div class="cntr">
 
-
  <a href="https://static.igem.org/mediawiki/2014/0/07/EPFL_2014_03_10_2014_Experiment-46.jpg" data-lightbox="results" data-title="Results"><img src="https://static.igem.org/mediawiki/2014/0/07/EPFL_2014_03_10_2014_Experiment-46.jpg" alt="results" width="45%" class="pull-left"></a>
 
-
  <a href="https://static.igem.org/mediawiki/2014/e/ec/EPFL_2014_03_10_2014_Experiment-24.jpg" data-lightbox="results" data-title="Results"></a>
 
-
  <a href="https://static.igem.org/mediawiki/2014/d/de/EPFL_2014_03_10_2014_Experiment-34.jpg" data-lightbox="results" data-title="Results"></a>
 
-
  <a href="https://static.igem.org/mediawiki/2014/f/fd/EPFL_2014_03_10_2014_Experiment-35.jpg" data-lightbox="results" data-title="Results"></a>
 
-
  <a href="https://static.igem.org/mediawiki/2014/0/08/EPFL_2014_03_10_2014_Experiment-37.jpg" data-lightbox="results" data-title="Results"></a>
 
-
  <a href="https://static.igem.org/mediawiki/2014/a/a7/EPFL_2014_03_10_2014_Experiment-38.jpg" data-lightbox="results" data-title="Results"></a> 
 
-
  <a href="https://static.igem.org/mediawiki/2014/2/2e/EPFL_2014_03_10_2014_Picture3.jpg" data-lightbox="results" data-title="Results"><img src="https://static.igem.org/mediawiki/2014/2/2e/EPFL_2014_03_10_2014_Picture3.jpg" alt="results" width="45%" class="pull-right"></a>
 
-
  </div>
 
-
               
 
-
                <br /><br />
+
<!-- END MENU -->
-
                <h2> <b><u>Characterisation of the split luciferase </u> </b> </h2>
+
 
-
                <h3><b>Experiment 1: </b>CheY/CheZ fused to split Firefly/Renilla luciferase, and full Firefly/Renilla luciferase characterisation </h3>
+
<!-- ABSTRACT -->
-
                <p><u>Introduction</u> <br />
+
 
-
                CheY and CheZ are two proteins involved in the bacterial chemotaxis pathway. It has been shown by split luciferase complementation assay that these two proteins are not interacting in presence of chemoattractant, but start to interact (CheZ being the phosphatase of CheY) in absence of chemoattractant or presence of chemorepellent. Based on the work of Waldor<sup><a href="#ref1">1</a></sup> Laboratory, we wanted to redo and adapt the experiment to test our own splits.<br /> <br /></p>
+
 
-
                <p>
+
<div class="container">
-
                <u>Aim</u> <br />
+
<div class="box" id="boxbread">
-
                This experiment aimed to test the efficiency of split Renilla luciferase and split Firefly luciferase. We wanted to study the speed of the signal and the amount of substrate needed to have a performant response. <br /> <br />
+
 
-
                </p>
+
<ol class="breadcrumb breadcrumb-arrow">
-
                <p>
+
                   <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
-
                <u>Method</u> <br />
+
                  <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-cog"></i> Project <b class="caret"></b></a>
-
                To proceed to this complementation assay, we built two constructs, one to test split Renilla Luciferase and the other for split Firefly Luciferase The CheY was fused to the N-terminal part of each split, while the CheZ was fused to the C-terminal part. We used the full luciferases (Renilla : <a href="http://parts.igem.org/Part:BBa_K1486022"> BBa_K1486022 </a> and Firefly : <a href="http://parts.igem.org/Part:BBa_K325108"> BBa_K325108 </a> from Cambridge 2010 team) as positive controls and the non-fused splits (Renilla : <a href="http://parts.igem.org/Part:BBa_K1486021"> BBa_K1486021 </a> and Firefly : <a href="http://parts.igem.org/Part:BBa_K1486018"> BBa_K1486018 </a>) as negative controls.<br /> <br />
+
                     <ul class="dropdown-menu">
-
                The bioluminescence assay was performed as described <a href="https://static.igem.org/mediawiki/2014/6/6d/Protocol_-_Bioluminescence_assay.pdf">here</a>. <br />
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
-
                The constructs were designed and assembled as described <a href="https://static.igem.org/mediawiki/2014/3/3b/Constructs_design_CheYCheZ.pdf">here</a>.<br /><br /> <br />
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
-
                </p>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
-
                <p><u>Results</u> <br />
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
-
                As shown in the graphs below (fig.1A and 1B), we couldn't really observe a high signal for our complementation assay. However, the signal being higher than the blanks, it is an encouraging sign that the splits luciferase can be used for other experiments of this kind. A possible explanation for these results is that arabinose being a chemoattractant, we might need to do more wash steps with PBS to get rid of the arabinose before taking the measurements. Moreover, CheY and CheZ being endogenously expressed in bacteria, the edogenous proteins could interfere with our fusion proteins and weaken our signal. This complementation assay should be tested with CheY/CheZ knock out strains, as it was done in Waldor Laboratory.<br />
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
-
                </p>
+
                     </ul>
-
                <br />
+
                   </li>
-
                <div class="cntr">
+
                   <li class="active"><span><i class="glyphicon glyphicon-picture"></i> Overview</span></li>
-
                <a href="https://static.igem.org/mediawiki/2014/3/30/Renilla-CheYCheZexp.png" data-lightbox="cheYcheZ" data-title="Renilla"><img src="https://static.igem.org/mediawiki/2014/3/30/Renilla-CheYCheZexp.png" alt="cheYcheZ" width="45%"></a>
+
                 </ol>
-
                <a href="https://static.igem.org/mediawiki/2014/f/f9/Firefly-CheYCheZexp.png" data-lightbox="cheYcheZ" data-title="Firefly"><img src="https://static.igem.org/mediawiki/2014/f/f9/Firefly-CheYCheZexp.png" alt="cheYcheZ" width="45%"></a>
+
-
                </div><br />
+
-
                <br />
+
-
                We also could determine which of the luciferases would best suit our following experiments. As shown in fig. 2, for the same concentration of substrate, we see that firefly luciferase has a more stable and higher signal.  Moreover, the difference between the background noise (negative control, non fused split luciferase) and the full luciferase is bigger for Firefly luciferase, which is also preferable.<br />
+
-
                <div class="cntr">
+
-
                  <p>
+
-
                  <div class="cntr">
+
-
                    <img src="https://static.igem.org/mediawiki/2014/f/f7/Controls-CheYCheZexp.png" class="img-responsive">
+
-
                  </div>
+
-
                  </p>
+
-
                </div>
+
-
                <br />
+
-
                <h2> <b><u>Microfluidic Achievements </u> </b> </h2>
+
-
                <h3><b>Experiment 1: </b></h3>
+
-
                <h3>Microfluidic Accomplishments</h3>
+
-
                <table class="table table-striped valign-middle table-center">
+
-
                   <thead>
+
-
                    <tr>
+
-
                      <th></th>
+
-
                      <th>MITOMI</th>
+
-
                      <th>MITOMI modified</th>
+
-
                      <th>SmashColi</th>
+
-
                      <th>BioPad</th>
+
-
                      <th>FilterColi</th>
+
-
                      <th>CleanColi</th>
+
-
                    </tr>
+
-
                  </thead>
+
-
                  <tbody>
+
-
                    <tr>
+
-
                      <td>Full chip</td>
+
-
                      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/a/ab/Mitomi11.png" data-lightbox="chips" data-title="MITOMI"><img src="https://static.igem.org/mediawiki/2014/a/ab/Mitomi11.png" width="70%"/></a><br /></td>
+
-
                      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/6/64/Mitomimodif1.png" data-lightbox="chips" data-title="MITOMI Modified"><img src="https://static.igem.org/mediawiki/2014/6/64/Mitomimodif1.png" width="70%"/></a><br /></td>
+
-
                      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/1/15/Smash1.png" data-lightbox="chips" data-title="SmashColi"><img src="https://static.igem.org/mediawiki/2014/1/15/Smash1.png" width="70%"/></a><br /></td>
+
-
                      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/d/db/Biopad1.png" data-lightbox="chips" data-title="BioPad"><img src="https://static.igem.org/mediawiki/2014/d/db/Biopad1.png" width="70%"/></a><br /></td>
+
-
                      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/d/db/Filter1.png" data-lightbox="chips" data-title="FilterColi"><img src="https://static.igem.org/mediawiki/2014/d/db/Filter1.png" width="70%"/></a><br /></td>
+
-
                      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/e/e1/Clean1.png" data-lightbox="chips" data-title="CleanColi"><img src="https://static.igem.org/mediawiki/2014/e/e1/Clean1.png" width="70%"/></a><br /></td>
+
-
                     </tr>
+
-
                    <tr>
+
-
                      <td>Unit Cell</td>
+
-
                      <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/0/0f/MitomiUnit1.png" data-lightbox="chips" data-title="MITOMI Unit"><img src="https://static.igem.org/mediawiki/2014/0/0f/MitomiUnit1.png" width="50%"/></a><br /></td>
+
-
                       <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/7/78/MitomimodifUnit.png" data-lightbox="chips" data-title="MITOMI Modified Unit"><img src="https://static.igem.org/mediawiki/2014/7/78/MitomimodifUnit.png" width="70%"/></a><br /></td>
+
-
                       <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/3/3a/Smahsunit1.png" data-lightbox="chips" data-title="SmashColi Unit"><img src="https://static.igem.org/mediawiki/2014/3/3a/Smahsunit1.png" width="30%"/></a><br /></td>
+
-
                       <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/6/60/Biopadunit1.png" data-lightbox="chips" data-title="BioPad Unit"><img src="https://static.igem.org/mediawiki/2014/6/60/Biopadunit1.png" width="70%"/></a><br /></td>
+
-
                       <td class="cntr"><a href="https://static.igem.org/mediawiki/2014/9/9e/FilterUnit.png" data-lightbox="chips" data-title="FilterColi Unit"><img src="https://static.igem.org/mediawiki/2014/9/9e/FilterUnit.png" width="70%"/></a><br /></td>
+
-
                      <td><span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                    </tr>
+
-
                    <tr>
+
-
                      <td>Designed</td>
+
-
                      <td><span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                    </tr>
+
-
                    <tr>
+
-
                      <td>Mold fabrication</td>
+
-
                      <td><span class="glyphicon glyphicon-ok glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                    </tr>
+
-
                    <tr>
+
-
                      <td>Fabrication of the chip</td>
+
-
                      <td><span class="glyphicon glyphicon-ok glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                    </tr>
+
-
                    <tr>
+
-
                      <td>Application</td>
+
-
                      <td><span class="glyphicon glyphicon-ok glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-ok glyph-check"></span> </td>
+
-
                      <td> <span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td> <span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                    </tr>
+
-
                    <tr>
+
-
                      <td>Reference</td>
+
-
                      <td ><a href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI paper</a><br /></td>
+
-
                       <td><span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td><span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td><span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td><span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                      <td><span class="glyphicon glyphicon-time glyph-check"></span></td>
+
-
                    </tr>
+
-
                  </tbody>
+
-
                </table>
+
-
                <br/>
+
-
                <h3><b>Experiment 2: Culturing <i>E. coli</i> with constitutive GFP on chip</b></h3>
+
-
                <p>We loaded <i>E. coli</i>, which contained constitutive GFP, in the chip. By using LabVIEW, a protocol was launched overnight to ensure the growth of the cells (the protocol can be found <a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">here</a>).
+
-
                <br /></p>
+
-
                <p>
+
-
                <div class="cntr">
+
-
                  <img src="https://static.igem.org/mediawiki/2014/e/e4/Growth_small.gif" class="img-responsive">
+
-
                </div>
+
-
                </p>
+
-
                <p>The next morning, a scan of the chip was done to see the intensity of the GFP in the chip.<br /></p>
+
-
                <div class="container">
+
-
                  <p>
+
-
                  <div class="cntr">
+
-
                     <img src="https://static.igem.org/mediawiki/2014/f/fe/Gfp.png" width="300">
+
-
                   </div>
+
-
                   </p>
+
-
                </div>
+
-
                <br />
+
-
                <h3><b>Experiment 3: Inducing the pBAD promoter of our <i>E. coli</i> that has CpxR linked with GFP</b></h3>
+
-
                <p>The experiment that was done on wetbench to show that CpxR linked with GFP was expressed with an arabinose promoter was replicated on a MITOMI chip.
+
-
                LB medium with arabinose was flowed in the upper half whereas LB medium without arabinose was flowed in the lower half. We scanned every hour for 5h (to know how it was done click <a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">here</a>).</p>
+
-
                <p><img src="https://static.igem.org/mediawiki/2014/4/4e/Truc2.png" alt="" class="img-responsive" /></p>
+
-
                <p><strong>Figure 1.</strong> Scan of the microfluidic chip at t = 0min. No signal is detected</p>
+
-
                <p>&nbsp;</p>
+
-
                <p><img src="https://static.igem.org/mediawiki/2014/3/32/Truc3.png" alt="" class="img-responsive" /></p>
+
-
                <p><strong>Figure 2.</strong> Scan of the microfluidic chip at t = 300min.</p>
+
-
                <p>We analysed the scans and obtained the following results.</p>
+
-
                <p><img src="https://static.igem.org/mediawiki/2014/4/4c/Gfp_ara.png" alt="" class="img-responsive" /></p>
+
-
                <p><strong>Figure 3.&nbsp;</strong>Evolution of CpxR-GFP fluorescence over time</p>
+
-
                <h2> <b><u>Yeast stuff ?</u> </b> </h2>
+
-
                <h3><b>Experiment 1: </b></h3>
+
-
                <p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat. Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor, facilisis luctus, metus</p>
+
-
                <h4> References </h4>
+
-
                <p>
+
-
                <a id="ref1"></a>1: S.K. Hatzios, S. Ringgaard, B. M. Davis, M. K. Waldor (2012, August 15). Studies of Dynamic Protein-Protein Interactions in Bacteria Using Renilla Luciferase Complementation Are Undermined by Nonspecific Enzyme Inhibition. <i>Plos One</i>.
+
-
                </p>
+
-
              </div>
+
-
          </div>
+
-
        </div>
+
-
        <div class="col col-md-3">
+
-
          <nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
+
-
            <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="700">
+
-
              <li><a href="#general_medal" class="active">General Medal</a>
+
-
              <ul class="nav">
+
-
                 <li><a href="#general_bronze">Bronze</a></li>
+
-
                <li><a href="#general_silver">Silver</a></li>
+
-
                <li><a href="#general_gold">Gold</a></li>
+
-
              </ul>
+
-
            </li>
+
-
            <li><a href="#microfluidics_medal">Microfluidics Medal</a>
+
-
            <ul class="nav">
+
-
              <li><a href="#microfluidics_bronze">Bronze</a></li>
+
-
              <li><a href="#microfluidics_silver">Silver</a></li>
+
-
              <li><a href="#microfluidics_gold">Gold</a></li>
+
-
            </ul>
+
-
          </li>
+
-
        </ul>
+
-
      </nav>
+
-
    </div>
+
-
  </div>
+
</div>
</div>
 +
 +
<div class="row">
 +
 +
<div class="col col-md-9">
 +
 +
 +
<div class="whitebg box">
 +
<!-- PROJECT -->
 +
 +
<div class="align-justify">
 +
 +
<h1 class="cntr">Overview</h1>
 +
 +
<h2 class="section-heading" id="title_intro">Introduction</h2>
 +
<p class="lead">
 +
 +
<!--Our team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently.-->
 +
 +
Biological responses can be quick and precise! This is the message that our team wants to convey. With this in mind, our team brought forward a novel idea:
 +
<br />
 +
 +
<p style="border-style:solid; border-color:#120A2A;padding: 25px; background-color:#A5D2DA">
 +
Combining Protein Complementation techniques with biosensors and microfluidics allows fast spatiotemporal analysis of bacterial/yeast responses to stimuli.
 +
</p>
 +
 +
<br/>
 +
 +
 +
<!--
 +
Biological responses can be quick! This is the message that the 2014 EPFL iGEM team want to convey.
 +
 +
<br /><br /><i>The BioPad project is intended to be a solid proof-of-concept of the combination of biosensors with protein complementation techniques to achieve fast spatiotemporal analysis of bacterial or yeast response to mechanical stimuli.</i>
 +
</p>
 +
-->
 +
 +
 +
 +
 +
<p class="lead">
 +
Our team explored this hypothesis by engineering two stress related pathways in <i>E. coli</i> and <i>S. cerevisiae</i> with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch-responsive bacteria/yeast, and a signal detector. Learn more about <a href="#howitworks">how the BioPad works !</a> </p>
 +
 +
 +
 +
<!--
 +
<p class="lead">
 +
The pathway engineered in <i>E. coli</i>, the Cpx Pathway, is a two-component (CpxA and CpxR) regulatory system responsive to envelope stress. It controls the expression of "survival" genes whose products act in the periplasm to maintain membrane integrity. CpxA intermembrane kinase activates and autophosphorylates when sensing misfolded protein (due to stress for example). CpxA phosphorylates CpxR which homodimerizes, acting as a transcription factor. A full description of the pathway is available <a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Envelope Stress Responsive Bacteria page !</a></p>
 +
 +
-->
 +
 +
<p class="lead">
 +
The pathway engineered in <i>E. coli</i>, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available <a  target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria#cpx">here.</a>
 +
<br/>
 +
In <i>S. cerevisiae</i> we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">here.</a>
 +
</p>
 +
 +
<br/>
 +
 +
<div  class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" data-lightbox="cpxr" data-title="CpxR-HOG">
 +
<img src="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" alt="touch response" class="img-responsive img-border" /></a>
 +
</div>
 +
 +
<br /><br /><br/>
 +
 +
<div class="pull-left img-left">
 +
<a href="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" data-lightbox="image-1" data-title="EPFL microfluidic chips"><img src="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" width="250" class="img-border"></a>
 +
<figcaption class="cntr">EPFL microfluidic chips</figcaption>
 +
</div>
 +
<p class="lead">
 +
 +
Our project also includes an extensive <b>microfluidics section</b>. Our self designed chips helped us improve precision, safety and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out <a  target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">this link.</a></p>
 +
 +
<div class="pull-right img-right">
 +
<img src="http://www.raspberrypi.org/wp-content/uploads/2011/07/RaspiModelB.png" alt="first" width="200" class="img-border">
 +
<figcaption class="cntr">Raspberry Pi</figcaption>
 +
</div>
 +
<p class="lead">
 +
<br />
 +
Last but not least, we designed a <b>novel signal detector</b>! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning the BioPad detector can be found <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">here.</a>
 +
<br /></p>
 +
 +
<!--
 +
  <h2 id="CpxPathway">The Cpx Pathway in <i> E.Coli </i></h2>
 +
<br />
 +
 +
 +
<!-- CpxA-CpxR PATHWAY DESCRIPTION -->
 +
 +
 +
<!--
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/6/62/Cpx_pathway_2_far_2.jpg" alt="Cpx_pathway_description_diagram" class="img-responsive">
 +
</div>
 +
-->
 +
 +
<!--
 +
<p class="lead">
 +
The natural function of the Cpx two component regulatory system in bacteria is to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extracytoplasmic stresses. The Cpx two component regulatory system belongs to the class I histidine kinases and includes three main proteins: CpxA, CpxR, and CpxP. For more detailed information about the Cpx pathway check out our <a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Envelope Stress Responsive Bacteria page !</a></p>
 +
<br />
 +
 +
-->
 +
 +
 +
<!--
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/4/41/Cpx_pathway_description_EPFL.jpg" width="70%" alt="Cpx_pathway_description">
 +
</div>
 +
-->
 +
 +
<br />
 +
 +
<hr />
 +
<br />
 +
 +
 +
<h2 class="section-heading" id="howitworks">How the BioPad works - <i>E. coli</i></h2>
 +
 +
<div class="pull-right img-right">
 +
<a href="https://static.igem.org/mediawiki/2014/b/b7/Puce_petit.jpg" data-lightbox="image-0" data-title="A potential BioPad">
 +
<img src="https://static.igem.org/mediawiki/2014/b/b7/Puce_petit.jpg" alt="Potential biopad" height="200" class="img-border" /></a>
 +
<figcaption class="cntr">A potential BioPad</figcaption>
 +
</div>
 +
 +
<p class="lead">
 +
Our BioPad is a self-designed PDMS microfluidic chip, made of thousands of compartments representing “pixels”. Each 300μm x 300μm x 50μm compartment contains a few layers of <i>E. coli</i>. When the surface of the chip is touched, a deformation on the chip - and thus of the compartments – leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.<br/> <br/></p>
 +
 +
 +
<p class="lead">
 +
 +
The histidine kinase sensor CpxA auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR, resulting in its dimerization. We engineered the pathway, by fusing split reporter protein fragments to the CpxR (IFP1.4). This allows the two fragments to remain inactive until physical interaction of CpxR (stimulated by envelope stress) leads to the proper folding of IFP1.4  and reconstitution of its fluorescent properties. As the reconstitution of the split fragments of IFP1.4 are reversible, the system can be shutdown upon stress removal (CpxA changes conformation to become a phosphatase and induces CpxR’s dissociation).<br/> <br/>
 +
 +
The BioPad also includes a signal detector. This detector is composed of an inexpensive credit card-sized single-board computer called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light-emitting source. It identifies and processes the position of the light/fluorescence emitted by the BioPad. The information about the position of the light relative to chip is then used to control the associated electronic device. <br/>
 +
 +
 +
 +
 +
 +
 +
<div class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" data-lightbox="image-0" data-title="Fluorescence">
 +
<img src="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" alt="touch bacteria" height="200" class="img-border" /></a>
 +
</div>
 +
 +
<br />
 +
 +
<!--<hr />
 +
<br />
 +
 +
  <h2 id="thehogpathway">The HOG Pathway</h2>
 +
 +
 +
 +
<p class="lead">The HOG (High Osmolarity Glycerol) pathway is a MAPK (Mitogen activated protein kinase) pathway which yeast cells use to coordinate intracellular activities to optimise survival and proliferation in not only hyper-osmotic stress but also heat shock, nitrogen stress and oxidative stress. It is represented below.</p>
 +
 +
<br />
 +
<br />
 +
<img src="https://static.igem.org/mediawiki/2014/6/6d/Hog_pathway_copy.jpg" width="750" alt="HOG_pathway_description">
 +
<br />
 +
<p> The pathway includes five main proteins:</p>
 +
<ul style="padding-left:80px">
 +
<li><p class="lead">Sho1/Sln1 – Membrane proteins which are classed as STREs (STress Response Elements) which sense the stress and initiate the pathway</p></li>
 +
<li><p class="lead">Ste11 – The MAPKKK which phosphorylates PBS2</p></li>
 +
<li><p class="lead">PBS2 – The MAPKK which phosphorylates HOG1</p></li>
 +
<li><p class="lead">HOG1 – The MAPK which localizes to the nucleus upon phosphorylation and induces target gene transcription</p></li>
 +
</ul>
 +
<br>-->
 +
<br>
 +
 +
  <h2 id="howweengineered">Engineering the HOG pathway in <i>S. cerevisiae</i></h2>
 +
 +
 +
 +
<p class="lead">
 +
<br/>
 +
The <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">HOG pathway</a> controls the response to osmotic stress in yeast cells.
 +
Like bacteria, our modified <i>S. cerevisiae</i> cells can be loaded into the PDMS microfluidic chips we have designed. Thus cells are confined in small compartments made of a soft material. When the surface of the chip is touched, it leads to a deformation of the chip and its chambers. Since the HOG pathway is reactive to turgor pressure, the mechanical pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.
 +
</p>
 +
 +
<div class="pull-left img-left" style="width:55%">
 +
<a href="https://static.igem.org/mediawiki/2014/7/7b/Schema_split.png" data-lightbox="img1" data-title="Figure of Hog1/Pbs2 split sfGFP and split rLuc">
 +
<img src="https://static.igem.org/mediawiki/2014/7/7b/Schema_split.png" alt="" class="img-border" style="width: 100%">
 +
</a>
 +
<figcaption class="cntr">Figure of Hog1/Pbs2 split sfGFP and split rLuc</figcaption>
 +
 +
</div>
 +
 +
<p class="lead">
 +
These two kinases were fused to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination. This allowed us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.
 +
</p>
 +
 +
<p class="lead">
 +
The split sfGFP is irreversible and aimed to show the interaction between our two Pbs2 and Hog1 while we used the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioPad Detector is programmed to identify and process the light position and can transmit the information to a computer.
 +
</p>
 +
 +
 +
<hr>
 +
 +
 +
<h2 class="section-heading" id="thebiopad">The BioPad Detector</h2>
 +
<p class="lead">
 +
 +
 +
<!-- ENGINEERING DETECTOR -->
 +
 +
The signals induced by the BioPad are then processed by our self designed detection system: the BioPad Detector. The BioPad Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioPad Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioPad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioPad.
 +
 +
</p>
 +
 +
<div class="cntr">
 +
<a href="https://static.igem.org/mediawiki/2014/b/bd/IMG_4154.JPG" data-lightbox="raspberry" data-title="the Raspberry Pi with a microfluidic chip on the lens"><img src="https://static.igem.org/mediawiki/2014/8/88/DeviceRasp.png" alt="Device" class="img-border img-responsive" /></a>
 +
<figcaption class="cntr">the Raspberry Pi with a microfluidic chip on the lens</figcaption>
 +
</div>
 +
 +
</div>
 +
 +
<!-- END PROJECT -->
 +
 +
 +
</div>
 +
</div>
 +
 +
<div class="col col-md-3">
 +
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
 +
    <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="600">
 +
        <li  class="active"><a href="#title_intro">Introduction</a></li>
 +
        <li><a href="#howitworks">How the BioPad works - <i>E. coli</i></a></li>
 +
        <li><a href="#howweengineered">Engineering the HOG pathway in <i>S. cerevisiae</i></a> </li>
 +
        <li><a href="#thebiopad">The BioPad Detector</a></li>
 +
 +
    </ul>
 +
</nav>
 +
</div>
 +
</div>
 +
</div>
 +
<!-- END ABSTRACT -->
<!-- END ABSTRACT -->
 +
</html>
</html>
{{CSS/EPFL_bottom}}
{{CSS/EPFL_bottom}}

Latest revision as of 03:22, 18 October 2014

Overview

Introduction

Biological responses can be quick and precise! This is the message that our team wants to convey. With this in mind, our team brought forward a novel idea:

Combining Protein Complementation techniques with biosensors and microfluidics allows fast spatiotemporal analysis of bacterial/yeast responses to stimuli.


Our team explored this hypothesis by engineering two stress related pathways in E. coli and S. cerevisiae with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch-responsive bacteria/yeast, and a signal detector. Learn more about how the BioPad works !

The pathway engineered in E. coli, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available here.
In S. cerevisiae we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click here.





EPFL microfluidic chips

Our project also includes an extensive microfluidics section. Our self designed chips helped us improve precision, safety and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out this link.

first
Raspberry Pi


Last but not least, we designed a novel signal detector! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning the BioPad detector can be found here.




How the BioPad works - E. coli

Potential biopad
A potential BioPad

Our BioPad is a self-designed PDMS microfluidic chip, made of thousands of compartments representing “pixels”. Each 300μm x 300μm x 50μm compartment contains a few layers of E. coli. When the surface of the chip is touched, a deformation on the chip - and thus of the compartments – leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.

The histidine kinase sensor CpxA auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR, resulting in its dimerization. We engineered the pathway, by fusing split reporter protein fragments to the CpxR (IFP1.4). This allows the two fragments to remain inactive until physical interaction of CpxR (stimulated by envelope stress) leads to the proper folding of IFP1.4 and reconstitution of its fluorescent properties. As the reconstitution of the split fragments of IFP1.4 are reversible, the system can be shutdown upon stress removal (CpxA changes conformation to become a phosphatase and induces CpxR’s dissociation).

The BioPad also includes a signal detector. This detector is composed of an inexpensive credit card-sized single-board computer called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light-emitting source. It identifies and processes the position of the light/fluorescence emitted by the BioPad. The information about the position of the light relative to chip is then used to control the associated electronic device.



Engineering the HOG pathway in S. cerevisiae


The HOG pathway controls the response to osmotic stress in yeast cells. Like bacteria, our modified S. cerevisiae cells can be loaded into the PDMS microfluidic chips we have designed. Thus cells are confined in small compartments made of a soft material. When the surface of the chip is touched, it leads to a deformation of the chip and its chambers. Since the HOG pathway is reactive to turgor pressure, the mechanical pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.

Figure of Hog1/Pbs2 split sfGFP and split rLuc

These two kinases were fused to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination. This allowed us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.

The split sfGFP is irreversible and aimed to show the interaction between our two Pbs2 and Hog1 while we used the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioPad Detector is programmed to identify and process the light position and can transmit the information to a computer.


The BioPad Detector

The signals induced by the BioPad are then processed by our self designed detection system: the BioPad Detector. The BioPad Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioPad Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioPad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioPad.

Device
the Raspberry Pi with a microfluidic chip on the lens

Sponsors