Team:EPF Lausanne/Overview

From 2014.igem.org

(Difference between revisions)
Line 11: Line 11:
<!-- MENU -->
<!-- MENU -->
-
 
+
  <nav class="navbar navbar-default navbar_alt" role="navigation">
-
<nav class="navbar navbar-default navbar_alt" role="navigation">
+
    <div class="container-fluid">
-
  <div class="container-fluid">
+
      <!-- Brand and toggle get grouped for better mobile display -->
-
    <!-- Brand and toggle get grouped for better mobile display -->
+
      <div class="navbar-header">
-
    <div class="navbar-header">
+
        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
-
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
+
         <span class="sr-only">Toggle navigation</span>
         <span class="sr-only">Toggle navigation</span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
-
      </button>
+
        </button>
-
      <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
+
        <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
-
</a>
+
      </a>
     </div>
     </div>
-
 
     <!-- Collect the nav links, forms, and other content for toggling -->
     <!-- Collect the nav links, forms, and other content for toggling -->
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
       <ul class="nav navbar-nav navbar-right">
       <ul class="nav navbar-nav navbar-right">
-
    <div class="nav-collapse">
+
        <div class="nav-collapse">
-
      <ul class="nav">
+
          <ul class="nav">
-
        <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
-
        <li class="dropdown">
+
            <li class="dropdown">
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
              <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Project <span class="caret"></span></a>
-
          <ul class="dropdown-menu" role="menu">
+
              <ul class="dropdown-menu" role="menu">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview" class="active">Overview</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
-
 
+
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
 
+
              -->          </ul>
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
            </li>
-
-->          </ul>
+
            <li class="dropdown">
-
        </li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
-
 
+
              <ul class="dropdown-menu" role="menu">
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
-
      <li class="dropdown">
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
-
          <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
-
          <ul class="dropdown-menu" role="menu">
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
              </ul>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
            </li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts" class="active">Parts</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
-
          </ul>
+
              <ul class="dropdown-menu" role="menu">
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
-
        <li class="dropdown">
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
+
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
          <ul class="dropdown-menu" role="menu">
+
              -->          </ul>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
+
            </li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
-
 
+
              <ul class="dropdown-menu" role="menu">
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
-
-->          </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
-
      <li class="dropdown">
+
              </ul>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
+
            </li>
-
          <ul class="dropdown-menu" role="menu">
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
+
              <ul class="dropdown-menu" role="menu">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
-
          </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
-
 
+
              </ul>
-
      <li class="dropdown">
+
            </li>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
+
          </div>
-
          <ul class="dropdown-menu" role="menu">
+
        </ul>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
+
        </div><!-- /.navbar-collapse -->
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
+
        </div><!-- /.container-fluid -->
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
+
      </nav>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
+
-
          </ul>
+
-
        </li>
+
-
    </div>
+
-
      </ul>
+
-
 
+
-
    </div><!-- /.navbar-collapse -->
+
-
  </div><!-- /.container-fluid -->
+
-
</nav>
+
-
 
+
<!-- END MENU -->
<!-- END MENU -->
 +
<!-- ABSTRACT -->
-
<!-- ABSTRACT -->
 
<div class="container">
<div class="container">
Line 106: Line 94:
<ol class="breadcrumb breadcrumb-arrow">
<ol class="breadcrumb breadcrumb-arrow">
                   <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
                   <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
-
                   <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-star"></i> Achievements <b class="caret"></b></a>
+
                   <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-cog"></i> Project <b class="caret"></b></a>
                     <ul class="dropdown-menu">
                     <ul class="dropdown-menu">
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
-
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
                       <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 +
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
                     </ul>
                     </ul>
                   </li>
                   </li>
-
                   <li class="active"><span><i class="glyphicon glyphicon-list-alt"></i> Parts</span></li>
+
                   <li class="active"><span><i class="glyphicon glyphicon-picture"></i> Overview</span></li>
                 </ol>
                 </ol>
</div>
</div>
Line 123: Line 113:
<div class="whitebg box">
<div class="whitebg box">
 +
<!-- PROJECT -->
-
 
-
<!-- PARTS -->
 
-
 
-
 
-
<div id="parts">
 
<div class="align-left">
<div class="align-left">
-
<h1 class="cntr">PARTS</h1>
+
<h1 class="cntr">Project</h1>
-
 
+
<h2 class="section-heading" id="title_intro">Introduction</h2>
-
 
+
-
<section id="dna">
+
-
<h3 class="section-heading">DNA parts submitted by the 2014 EPFL iGEM team</h3>
+
<p class="lead">
<p class="lead">
-
Our team submitted a total of 55 Biobricks (biobrick 51 does not exist).</p>
+
The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining Protein Complementation techniques with biosensors to achieve fast spatiotemporal analysis of bacterial or yeast response to mechanical stimuli.  
 +
</p>
 +
<br /><br />
 +
<div class="pull-left img-left">
 +
<img src="https://static.igem.org/mediawiki/2014/9/9b/Touch_bacteria_EPFL_Ted.png" alt="touch bacteria" width="200" class="img-border" />
 +
</div>
<p class="lead">
<p class="lead">
-
In addition, 4 microfluidic designs have also been submitted to the registry.</p>
+
Our team explored this hypothesis by engineering two stress related pathways in E.Coli and S.Cerevisiae with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch responsive bacteria, and a signal detector. Learn more about <a href="#howitworks">how the BioPad works !</a> </p>
-
<table class="table table-striped table-hover" id="biobricks_list">
+
-
  <tr>
+
-
    <th>Biobrick</th>
+
-
    <th>What it is</th>
+
-
    <th>Function</th>
+
-
    <th>Why do we use it?</th>
+
-
    <th>Group</th>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486000</td>
+
-
    <td>CpxR coding sequence</td>
+
-
    <td>Transcription factor</td>
+
-
    <td>To make most of our biobricks!</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486001</td>
+
-
    <td>CpxR under arabinose promoter</td>
+
-
    <td>Treanscription factor</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486002</td>
+
-
    <td>PAra + sfGFP CpxR [Nterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486003</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486004</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486005</td>
+
-
    <td>PAra + CpxR sfGFP [Cterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486006</td>
+
-
    <td>IFP[1]</td>
+
-
    <td>N terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486007</td>
+
-
    <td>IFP[2]</td>
+
-
    <td>C terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486008</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486009</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each N terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486010</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486011</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486012</td>
+
-
    <td>CpxR + IFP[1]</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486013</td>
+
-
    <td>CpxR + IFP[2]</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486014</td>
+
-
    <td>IFP[1] + CpxR</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486015</td>
+
-
    <td>IFP[2] + CpxR</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486016</td>
+
-
    <td>fLuc[1]</td>
+
-
    <td>N terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486017</td>
+
-
    <td>fLuc[2]</td>
+
-
    <td>C terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486018</td>
+
-
    <td>PAra + fLuc[1] + fLuc[2]</td>
+
-
    <td>Split firefly luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486019</td>
+
-
    <td>rLuc[1]</td>
+
-
    <td>C terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486020</td>
+
-
    <td>rLuc[2]</td>
+
-
    <td>N terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486021</td>
+
-
    <td>PAra + rLuc[1] + rLuc[2]</td>
+
-
    <td>Split renilla luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486022</td>
+
-
    <td>rLuc</td>
+
-
    <td>Full renilla luciferase</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486023</td>
+
-
    <td>Yeast sfGFP</td>
+
-
    <td>Superfolder GFP for yeast cells</td>
+
-
    <td>Reporter</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486024</td>
+
-
    <td>Kan</td>
+
-
    <td>Yeast kanamycin resistance gene</td>
+
-
    <td>Selection marker</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486025</td>
+
-
    <td>ADH1 terminator</td>
+
-
    <td>Terminator</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486026</td>
+
-
    <td>Yeast sfGFP + Kan</td>
+
-
    <td>Yeast sfGFP attached to the yeast kanamycin resistance gene</td>
+
-
    <td>Control the expression of pbs2</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486027</td>
+
-
    <td>rLuc + Kan</td>
+
-
    <td>Renilla luciferase attached to the kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486028</td>
+
-
    <td>Yeast sfGFP[1]</td>
+
-
    <td>N terminal moiety of split yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486029</td>
+
-
    <td>sfGFP[1] + kan</td>
+
-
    <td>Nterm moiety of split yeast sfGFP attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486030</td>
+
-
    <td>rLuc[1] + kan</td>
+
-
    <td>Nterm moiety of split renilla luciferase attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486031</td>
+
-
    <td>Ura</td>
+
-
    <td>CDS for Uracil (yeast selective purposes)</td>
+
-
    <td>Confer resistance to Uracil-deprived medium</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486032</td>
+
-
    <td>Yeast sfGFP + Ura</td>
+
-
    <td>Yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486033</td>
+
-
    <td>rLuc + Ura</td>
+
-
    <td>Renilla luciferase attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486034</td>
+
-
    <td>yeast sfGFP[2]</td>
+
-
    <td>C terminal moiety of split the yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486035</td>
+
-
    <td>yeast sfGFP[2] + Ura</td>
+
-
    <td>Cterm moiety of split yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486036</td>
+
-
    <td>rLuc[2] + Ura</td>
+
-
    <td>Cterm moiety of split renilla luciferase attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486037</td>
+
-
    <td>linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486038</td>
+
-
    <td>sfGFP[1]</td>
+
-
    <td>N terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486039</td>
+
-
    <td>sfGFP[2]</td>
+
-
    <td>C terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486040</td>
+
-
    <td>sfGFP[1] + CpxR</td>
+
-
    <td>N terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486041</td>
+
-
    <td>sfGFP[2] + CpxR</td>
+
-
    <td>C terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486042</td>
+
-
    <td>LZip</td>
+
-
    <td>Monomer of leucine zipper TF</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486043</td>
+
-
    <td>LZip + split rLuc</td>
+
-
    <td>Two Leucine Zipper monomers, each attached to a different split rLuc moiety</td>
+
-
    <td>Control for split rLuc assays</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486044</td>
+
-
    <td>mut IFP[1]</td>
+
-
    <td>Biobrick-compatible IFP[1]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486045</td>
+
-
    <td>mut IFP[2]</td>
+
-
    <td>Biobrick-compatible IFP[2]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486046</td>
+
-
    <td>CpxR promoter FW</td>
+
-
    <td>CpxR binding-region in forward direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486047</td>
+
-
    <td>CpxR promoter RV</td>
+
-
    <td>CpxR binding-region in reverse direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486048</td>
+
-
    <td>CpxR reporter</td>
+
-
    <td>Calgary's CpxR reporter repaired (sequence was missing)</td>
+
-
    <td>To see when CpxR is active</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486049</td>
+
-
    <td>CpxR promoter FW + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486050</td>
+
-
    <td>CpxR promoter RV + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486052</td>
+
-
    <td>Spacer</td>
+
-
    <td>40 bases placed between constructs</td>
+
-
    <td>Separate two constructs in the same plasmid</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486053</td>
+
-
    <td>Linker</td>
+
-
    <td>10 amino-acid linker</td>
+
-
    <td>Attach CheY/Z to split luciferases</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486054</td>
+
-
    <td>CheY/CheZ rLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split renilla luciferase</td>
+
-
    <td>Positive control for the split rLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486055</td>
+
-
    <td>CheY/CheZ fLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split firefly luciferase</td>
+
-
    <td>Positive control for the split fLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486056</td>
+
-
    <td>CxpR & Split mut IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of the biobrick-compatible IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
 
-
<br /><br />
+
<br /><br /><br />
 +
<div class="pull-right img-right">
 +
<a href="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" data-lightbox="image-0" data-title="Fluorescence">
 +
<img src="https://static.igem.org/mediawiki/2014/1/15/Screen_Shot_2014-10-12_at_3.29.30_PM.png" alt="touch bacteria" height="200" class="img-border" /></a>
 +
</div>
 +
<p class="lead">
 +
The pathway engineered in E.Coli, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available <a href="#CpxPathway">here</a>. In S.Cerevisiae we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click <a href="#thehogpathway">here.</a></p>
-
<section id="microfluidics">
+
<br /><br /><br /><br /><br />
-
<h3 class="section-heading">Microfluidics parts (chips created)</h3>
+
 
 +
<div class="pull-left img-left">
 +
<a href="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" data-lightbox="image-1" data-title="EPFL microfluidic chips"><img src="https://static.igem.org/mediawiki/2014/d/d8/EPFLmicrofluidics.JPG" width="200" class="img-border"></a>
 +
</div>
<p class="lead">
<p class="lead">
-
Our team designed and made 4 microfluidic chips. At the beginning, we also used the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a>.</p>
 
-
<p class="lead">When designing the chips, the team took into account the future users and the current iGEM classification of parts. We considered it best to construct our chips as composite microfluidic parts, so their sub-parts could be used and combined in multiple ways. The flow and control layers can be separated and reused, as well as all the basic structures (chamber + connecting channel), nodes, array parts,...</p>
 
 +
Our project also includes an extensive microfluidics section. Our self designed chips helped us improve precision, safety, and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out <a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">this link !</a></p>
-
<!-- send all lines here: https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing -->
 
-
<table class="table table-striped table-hover" id="chips_list">
 
-
  <tr>
 
-
    <th>Name</th>
 
-
    <th>Main Function</th>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>MITOMI modified</td>
 
-
    <td>By using the MITOMI chip as a template, we designed our first chip that could squish the cells in the chamber.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>SmashColi</td>
 
-
    <td>To be able to separate the chip in 4 different compartments and apply 4 different pressures on each row of chambers.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>BioPad</td>
 
-
    <td>A large and simple microfluidic chip containing 6400 chambers in which the cells are contained in. Each chamber acts as a pixel for the BioPad project.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>CleanColi</td>
 
-
    <td>As a result of our Safety page, we decided to create a chip that is able to seal the bacteria in the chip, preventing them to leave the chip.</td>
 
-
  </tr>
 
-
  <tr>
 
-
    <td>FilterColi</td>
 
-
    <td>To successfully immerse cells in a certain solution, this chip was designed to flow in the new medium in the chambers instead of doing it by diffusion.</td>
 
-
  </tr>
 
-
</table>
 
-
</section>
 
-
 
+
<br /><br /><br />
-
<br /><br />
+
<div class="pull-right img-right">
-
</div>
+
<img src="http://www.raspberrypi.org/wp-content/uploads/2011/07/RaspiModelB.png" alt="first" width="200" class="img-border">
</div>
</div>
 +
<p class="lead">
 +
<br />
 +
Last but not least, we designed a novel signal detector ! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning this the BioPad detector can be found <a href="#CpxPathway">here.</a>
 +
<br /><br /><br /></p>
-
</div>
 
-
</div>
 
-
<div class="col col-md-3">
 
-
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
 
-
    <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="400">
 
-
        <li class="active"><a href="#dna">DNA Parts</a></li>
 
-
        <li><a href="#microfluidics">Microfluidics Parts</a></li>
 
-
    </ul>
 
-
</nav>
 
-
</div>
 
-
</div>
 
-
</div>
 
-
<!-- END ABSTRACT -->
 
-
<script type="text/javascript">
 
-
    $(document).ready(function() {
 
-
      $('#biobricks_list tr').click(function (e) {
 
-
        text = $(this).children('td.biobrick_name').first().text();
 
-
        if (text != '') {
 
-
          return window.open('http://parts.igem.org/Part:' + text, '_blank');
 
-
        }
 
-
      });
 
-
    });
 
-
</script>
 
-
</html>
 
-
{{CSS/EPFL_bottom}}
 
-
{{CSS/EPFL_head}}
 
-
<html>
 
-
<style>
 
-
#contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki settings --*/
 
-
</style>
 
-
<!--  here ends the section that changes the default wiki template to a white full width background -->
+
<hr />
 +
<br /><br />
 +
<a id="CpxPathway"></a>
 +
  <h2>The Cpx Pathway</h2>
 +
<br />
 +
<!-- CpxA-CpxR PATHWAY DESCRIPTION -->
-
<!-- MENU -->
+
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/6/62/Cpx_pathway_2_far_2.jpg" alt="Cpx_pathway_description_diagram" class="img-responsive">
 +
</div>
-
<nav class="navbar navbar-default navbar_alt" role="navigation">
 
-
  <div class="container-fluid">
 
-
    <!-- Brand and toggle get grouped for better mobile display -->
 
-
    <div class="navbar-header">
 
-
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 
-
        <span class="sr-only">Toggle navigation</span>
 
-
        <span class="icon-bar"></span>
 
-
        <span class="icon-bar"></span>
 
-
        <span class="icon-bar"></span>
 
-
      </button>
 
-
      <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
 
-
</a>
 
-
    </div>
 
-
    <!-- Collect the nav links, forms, and other content for toggling -->
+
<p class="lead">
-
    <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
+
The natural function of the Cpx two component regulatory system in bacteria is to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extracytoplasmic stresses. The Cpx two component regulatory system belongs to the class I histidine kinases and includes three main proteins: </p>
-
      <ul class="nav navbar-nav navbar-right">
+
<br />
-
    <div class="nav-collapse">
+
-
      <ul class="nav">
+
-
        <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
+
-
        <li class="dropdown">
+
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
+
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
 
-
-->          </ul>
 
-
        </li>
 
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/4/41/Cpx_pathway_description_EPFL.jpg" width="70%" alt="Cpx_pathway_description">
-
      <li class="dropdown">
+
</div>
-
          <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts" class="active">Parts</a></li>
+
-
          </ul>
+
-
        </li>
+
-
        <li class="dropdown">
+
<br />
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
+
-
          <ul class="dropdown-menu" role="menu">
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
+
-
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
<hr />
-
-->          </ul>
+
<br /><br />
-
        </li>
+
-
      <li class="dropdown">
 
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
 
-
          <ul class="dropdown-menu" role="menu">
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
 
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
 
-
          </ul>
 
-
        </li>
 
-
      <li class="dropdown">
+
<a id="howitworks"></a>
-
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
+
<h2 class="section-heading">How the BioPad works in E Coli</h2>
-
          <ul class="dropdown-menu" role="menu">
+
<p class="lead">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
+
Our self-designed PDMS microfluidic chip, the BioPad, is made of hundreds of compartments representing "pixels." Each 30µm x 30µm x 3µm compartment contains a few layers of E. coli. When the surface of the chip is touched, a deformation of the chip - and thus of the compartments - leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
+
<br />
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
+
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
+
-
          </ul>
+
-
        </li>
+
-
    </div>
+
-
      </ul>
+
-
    </div><!-- /.navbar-collapse -->
 
-
  </div><!-- /.container-fluid -->
 
-
</nav>
 
 +
The aggregated/misfolded proteins are then sensed by the histidine kinase CpxA sensor, which auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR. Upon phosphorylation, CpxR homo-dimerizes.
-
<!-- END MENU -->
+
<br />
 +
Our engineered bacteria contain CpxR proteins fused to split fluorescent protein fragments (split IFP1.4) via a 10-amino acid, 2x GGGGS flexible linker. This allows us to detect CpxR dimerization, synonymous periplasmic stress and touch. Moreover, the split protein fragments are reversible. Therefore, when stress is removed, CpxA changes conformation and dephosphorylates CpxR allowing it to dissociate. The signal is shutdown and darkness returns The BioTouch Detector (composed of an inexpensive CMOS called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light emitting source) identifies and processes the position of the light/fluorescence emitted by the BioPad. This information about the position of the light relative to chip is then used to control the associated electronic device.
 +
</p>
-
<!-- ABSTRACT -->
 
-
<div class="container">
+
<div class="cntr">
-
<div class="box" id="boxbread">
+
<img src="https://static.igem.org/mediawiki/2014/5/55/Touch4_epfl.jpg" alt="first">
-
 
+
<img src="https://static.igem.org/mediawiki/2014/1/10/Touch5_epfl.jpg" alt="second">
-
<ol class="breadcrumb breadcrumb-arrow">
+
-
                  <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
+
-
                  <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-star"></i> Achievements <b class="caret"></b></a>
+
-
                    <ul class="dropdown-menu">
+
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
+
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
-
                      <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
-
                    </ul>
+
-
                  </li>
+
-
                  <li class="active"><span><i class="glyphicon glyphicon-list-alt"></i> Parts</span></li>
+
-
                </ol>
+
</div>
</div>
-
<div class="row">
+
<br />
-
<div class="col col-md-9">
+
<hr />
 +
<br />
-
<div class="whitebg box">
+
<a id="thehogpathway"></a>
 +
  <h2>The HOG Pathway</h2>
-
<!-- PARTS -->
 
 +
<p class="lead">The HOG (High Osmolarity Glycerol) pathway is a MAPK (Mitogen activated protein kinase) pathway which yeast cells use to coordinate intracellular activities to optimise survival and proliferation in not only hyper-osmotic stress but also heat shock, nitrogen stress and oxidative stress. It is represented below.</p>
-
<div id="parts">
+
<br />
-
<div class="align-left">
+
<br />
 +
<img src="https://static.igem.org/mediawiki/2014/6/6d/Hog_pathway_copy.jpg" width="750" alt="HOG_pathway_description">
 +
<br />
-
<h1 class="cntr">PARTS</h1>
+
The pathway includes five main proteins:
 +
<ul style="padding-left:80px">
 +
<li><p class="lead">Sho1/Sln1 – Membrane proteins which are classed as STREs (STress Response Elements) which sense the stress and initiate the pathway</p></li>
 +
<li><p class="lead">Ste11 – The MAPKKK which phosphorylates PBS2</p></li>
 +
<li><p class="lead">PBS2 – The MAPKK which phosphorylates HOG1</p></li>
 +
<li><p class="lead">HOG1 – The MAPK which localizes to the nucleus upon phosphorylation and induces target gene transcription</p></li>
 +
</ul>
 +
<br>
 +
<br>
 +
<a id="howweengineered"></a>
 +
  <h2>How we engineered the HOG pathway to make our BioPad</h2>
 +
<p class="lead">
 +
Our engineered yeasts cells can be loaded into a microfluidic chip made of small compartments able to contain a few layers of cells. When the surface of the chip is touched, it leads to a deformation of the chip - and thus of its compartments. Since the HOG pathway is reactive to turgor pressure, the pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.
 +
</p>
-
<section id="dna">
 
-
<h3 class="section-heading">DNA parts submitted by the 2014 EPFL iGEM team</h3>
 
<p class="lead">
<p class="lead">
-
Our team submitted a total of 55 Biobricks (biobrick 51 does not exist).</p>
+
Therefore, we have fused these two kinases to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination.  This allows us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We have used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.
 +
</p>
 +
 
<p class="lead">
<p class="lead">
-
In addition, 4 microfluidic designs have also been submitted to the registry.</p>
+
As in the E.Coli, the split sfGFP is irreversible and was made to show the interaction between our two Pbs2 and Hog1 while we use the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioTouch Detector is programmed to identify and process the light position and can transmit the information to a computer.
-
<table class="table table-striped table-hover" id="biobricks_list">
+
</p>
-
  <tr>
+
-
    <th>Biobrick</th>
+
-
    <th>What it is</th>
+
-
    <th>Function</th>
+
-
    <th>Why do we use it?</th>
+
-
    <th>Group</th>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486000</td>
+
-
    <td>CpxR coding sequence</td>
+
-
    <td>Transcription factor</td>
+
-
    <td>To make most of our biobricks!</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486001</td>
+
-
    <td>CpxR under arabinose promoter</td>
+
-
    <td>Treanscription factor</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486002</td>
+
-
    <td>PAra + sfGFP CpxR [Nterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486003</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486004</td>
+
-
    <td>Flexible linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486005</td>
+
-
    <td>PAra + CpxR sfGFP [Cterm]</td>
+
-
    <td>Expresses fused protein</td>
+
-
    <td>Test CpxR expression & Ara promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486006</td>
+
-
    <td>IFP[1]</td>
+
-
    <td>N terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486007</td>
+
-
    <td>IFP[2]</td>
+
-
    <td>C terminus of split IFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486008</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486009</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each N terminus attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486010</td>
+
-
    <td>CxpR & Split IFP1.4 [Nterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486011</td>
+
-
    <td>CxpR & Split IFP1.4 [Cterm + Nterm]</td>
+
-
    <td>Two CpxR CDS, each attached to a moiety of IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486012</td>
+
-
    <td>CpxR + IFP[1]</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486013</td>
+
-
    <td>CpxR + IFP[2]</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its C terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486014</td>
+
-
    <td>IFP[1] + CpxR</td>
+
-
    <td>CpxR with the Nterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486015</td>
+
-
    <td>IFP[2] + CpxR</td>
+
-
    <td>CpxR with the Cterm moiety of IFP attached at its N terminus</td>
+
-
    <td>Intermediate & control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486016</td>
+
-
    <td>fLuc[1]</td>
+
-
    <td>N terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486017</td>
+
-
    <td>fLuc[2]</td>
+
-
    <td>C terminus moiety of the firefly luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486018</td>
+
-
    <td>PAra + fLuc[1] + fLuc[2]</td>
+
-
    <td>Split firefly luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486019</td>
+
-
    <td>rLuc[1]</td>
+
-
    <td>C terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486020</td>
+
-
    <td>rLuc[2]</td>
+
-
    <td>N terminus moiety of the renilla luciferase</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486021</td>
+
-
    <td>PAra + rLuc[1] + rLuc[2]</td>
+
-
    <td>Split renilla luciferase under arabinose promoter</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486022</td>
+
-
    <td>rLuc</td>
+
-
    <td>Full renilla luciferase</td>
+
-
    <td>Control</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486023</td>
+
-
    <td>Yeast sfGFP</td>
+
-
    <td>Superfolder GFP for yeast cells</td>
+
-
    <td>Reporter</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486024</td>
+
-
    <td>Kan</td>
+
-
    <td>Yeast kanamycin resistance gene</td>
+
-
    <td>Selection marker</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486025</td>
+
-
    <td>ADH1 terminator</td>
+
-
    <td>Terminator</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486026</td>
+
-
    <td>Yeast sfGFP + Kan</td>
+
-
    <td>Yeast sfGFP attached to the yeast kanamycin resistance gene</td>
+
-
    <td>Control the expression of pbs2</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486027</td>
+
-
    <td>rLuc + Kan</td>
+
-
    <td>Renilla luciferase attached to the kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486028</td>
+
-
    <td>Yeast sfGFP[1]</td>
+
-
    <td>N terminal moiety of split yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486029</td>
+
-
    <td>sfGFP[1] + kan</td>
+
-
    <td>Nterm moiety of split yeast sfGFP attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486030</td>
+
-
    <td>rLuc[1] + kan</td>
+
-
    <td>Nterm moiety of split renilla luciferase attached to yeast kanamycin resistance gene</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486031</td>
+
-
    <td>Ura</td>
+
-
    <td>CDS for Uracil (yeast selective purposes)</td>
+
-
    <td>Confer resistance to Uracil-deprived medium</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486032</td>
+
-
    <td>Yeast sfGFP + Ura</td>
+
-
    <td>Yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486033</td>
+
-
    <td>rLuc + Ura</td>
+
-
    <td>Renilla luciferase attached to the Uracil CDS</td>
+
-
    <td>Control the expression of hog1</td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486034</td>
+
-
    <td>yeast sfGFP[2]</td>
+
-
    <td>C terminal moiety of split the yeast sfGFP</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486035</td>
+
-
    <td>yeast sfGFP[2] + Ura</td>
+
-
    <td>Cterm moiety of split yeast sfGFP attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
<tr>
+
-
    <td class="biobrick_name">BBa_K1486036</td>
+
-
    <td>rLuc[2] + Ura</td>
+
-
    <td>Cterm moiety of split renilla luciferase attached to the Uracil CDS</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486037</td>
+
-
    <td>linker</td>
+
-
    <td>Attaches two proteins together</td>
+
-
    <td> </td>
+
-
    <td>Yeast</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486038</td>
+
-
    <td>sfGFP[1]</td>
+
-
    <td>N terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486039</td>
+
-
    <td>sfGFP[2]</td>
+
-
    <td>C terminus moiety of split superfolder GFP</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486040</td>
+
-
    <td>sfGFP[1] + CpxR</td>
+
-
    <td>N terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486041</td>
+
-
    <td>sfGFP[2] + CpxR</td>
+
-
    <td>C terminus moiety of split sfGFP attached to CpxR</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486042</td>
+
-
    <td>LZip</td>
+
-
    <td>Monomer of leucine zipper TF</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486043</td>
+
-
    <td>LZip + split rLuc</td>
+
-
    <td>Two Leucine Zipper monomers, each attached to a different split rLuc moiety</td>
+
-
    <td>Control for split rLuc assays</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486044</td>
+
-
    <td>mut IFP[1]</td>
+
-
    <td>Biobrick-compatible IFP[1]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486045</td>
+
-
    <td>mut IFP[2]</td>
+
-
    <td>Biobrick-compatible IFP[2]</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486046</td>
+
-
    <td>CpxR promoter FW</td>
+
-
    <td>CpxR binding-region in forward direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486047</td>
+
-
    <td>CpxR promoter RV</td>
+
-
    <td>CpxR binding-region in reverse direction</td>
+
-
    <td> </td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486048</td>
+
-
    <td>CpxR reporter</td>
+
-
    <td>Calgary's CpxR reporter repaired (sequence was missing)</td>
+
-
    <td>To see when CpxR is active</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486049</td>
+
-
    <td>CpxR promoter FW + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486050</td>
+
-
    <td>CpxR promoter RV + RFP</td>
+
-
    <td>Reporter of CpxR</td>
+
-
    <td>Test the direction of the complete CpxR promoter</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486052</td>
+
-
    <td>Spacer</td>
+
-
    <td>40 bases placed between constructs</td>
+
-
    <td>Separate two constructs in the same plasmid</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486053</td>
+
-
    <td>Linker</td>
+
-
    <td>10 amino-acid linker</td>
+
-
    <td>Attach CheY/Z to split luciferases</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486054</td>
+
-
    <td>CheY/CheZ rLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split renilla luciferase</td>
+
-
    <td>Positive control for the split rLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486055</td>
+
-
    <td>CheY/CheZ fLuc</td>
+
-
    <td>CheY and CheZ, each attached to a moiety of split firefly luciferase</td>
+
-
    <td>Positive control for the split fLuc</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td class="biobrick_name">BBa_K1486056</td>
+
-
    <td>CxpR & Split mut IFP1.4 [Cterm + Cterm]</td>
+
-
    <td>Two CpxR CDS, each C terminus attached to a moiety of the biobrick-compatible IFP</td>
+
-
    <td>Characterize CpxR dimerization</td>
+
-
    <td>Bacteria</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
 
 +
<hr>
<br /><br />
<br /><br />
-
 
+
<h2 class="section-heading">The BioPad Detector</h2>
-
<section id="microfluidics">
+
-
<h3 class="section-heading">Microfluidics parts (chips created)</h3>
+
<p class="lead">
<p class="lead">
-
Our team designed and made 4 microfluidic chips. At the beginning, we also used the <a target="_blank" href="http://link.springer.com/protocol/10.1007%2F978-1-61779-292-2_6">MITOMI chip</a>.</p>
+
<br />
-
<p class="lead">When designing the chips, the team took into account the future users and the current iGEM classification of parts. We considered it best to construct our chips as composite microfluidic parts, so their sub-parts could be used and combined in multiple ways. The flow and control layers can be separated and reused, as well as all the basic structures (chamber + connecting channel), nodes, array parts,...</p>
+
 +
<!-- ENGINEERING DETECTOR -->
-
<!-- send all lines here: https://2014.igem.org/Team:EPF_Lausanne/Microfluidics/Designing -->
+
The signals induced by the BioTouch Chip are then processed by our self designed detection system: the BioTouch Detector. The BioTouch Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioTouch Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioTouch Pad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioTouch Pad.
-
<table class="table table-striped table-hover" id="chips_list">
+
 
-
  <tr>
+
</p>
-
    <th>Name</th>
+
-
    <th>Main Function</th>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>MITOMI modified</td>
+
-
    <td>By using the MITOMI chip as a template, we designed our first chip that could squish the cells in the chamber.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>SmashColi</td>
+
-
    <td>To be able to separate the chip in 4 different compartments and apply 4 different pressures on each row of chambers.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>BioPad</td>
+
-
    <td>A large and simple microfluidic chip containing 6400 chambers in which the cells are contained in. Each chamber acts as a pixel for the BioPad project.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>CleanColi</td>
+
-
    <td>As a result of our Safety page, we decided to create a chip that is able to seal the bacteria in the chip, preventing them to leave the chip.</td>
+
-
  </tr>
+
-
  <tr>
+
-
    <td>FilterColi</td>
+
-
    <td>To successfully immerse cells in a certain solution, this chip was designed to flow in the new medium in the chambers instead of doing it by diffusion.</td>
+
-
  </tr>
+
-
</table>
+
-
</section>
+
-
<br /><br />
 
-
</div>
 
</div>
</div>
 +
 +
<!-- END PROJECT -->
 +
</div>
</div>
Line 1,211: Line 282:
<div class="col col-md-3">
<div class="col col-md-3">
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
<nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
-
     <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="400">
+
     <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="500">
-
         <li class="active"><a href="#dna">DNA Parts</a></li>
+
         <li class="active"><a href="#title_intro">Introduction</a></li>
-
         <li><a href="#microfluidics">Microfluidics Parts</a></li>
+
         <li><a href="#CpxPathway">The Cpx Pathway</a></li>
 +
        <li><a href="#howitworks">How the BioPad works in E Coli</a></li>
 +
        <li><a href="#thehogpathway">The HOG Pathway</a></li>
 +
        <!-- How we engineered the HOG pathway to make our BioPad -->
 +
 
     </ul>
     </ul>
</nav>
</nav>
Line 1,219: Line 294:
</div>
</div>
</div>
</div>
 +
<!-- END ABSTRACT -->
<!-- END ABSTRACT -->
-
<script type="text/javascript">
 
-
    $(document).ready(function() {
 
-
      $('#biobricks_list tr').click(function (e) {
 
-
        text = $(this).children('td.biobrick_name').first().text();
 
-
        if (text != '') {
 
-
          return window.open('http://parts.igem.org/Part:' + text, '_blank');
 
-
        }
 
-
      });
 
-
    });
 
-
</script>
 
</html>
</html>
{{CSS/EPFL_bottom}}
{{CSS/EPFL_bottom}}

Revision as of 13:15, 15 October 2014

Project

Introduction

The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining Protein Complementation techniques with biosensors to achieve fast spatiotemporal analysis of bacterial or yeast response to mechanical stimuli.



touch bacteria

Our team explored this hypothesis by engineering two stress related pathways in E.Coli and S.Cerevisiae with in mind the development of a BioPad: a biological touchscreen consisting of a microfluidic chip, touch responsive bacteria, and a signal detector. Learn more about how the BioPad works !




The pathway engineered in E.Coli, the Cpx Pathway, is a two-component regulatory system responsive to envelope stress. A full description of the pathway is available here. In S.Cerevisiae we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. For more information concerning the HOG Pathway click here.






Our project also includes an extensive microfluidics section. Our self designed chips helped us improve precision, safety, and quantification methods used throughout the project. To learn more about the microfluidic components of our project check out this link !




first


Last but not least, we designed a novel signal detector ! To make signal detection more practical we developed an automatised cheap tracking system made of a mini-computer (Raspberry Pi) and a mini-HD camera. More details concerning this the BioPad detector can be found here.





The Cpx Pathway


Cpx_pathway_description_diagram

The natural function of the Cpx two component regulatory system in bacteria is to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extracytoplasmic stresses. The Cpx two component regulatory system belongs to the class I histidine kinases and includes three main proteins:


Cpx_pathway_description




How the BioPad works in E Coli

Our self-designed PDMS microfluidic chip, the BioPad, is made of hundreds of compartments representing "pixels." Each 30µm x 30µm x 3µm compartment contains a few layers of E. coli. When the surface of the chip is touched, a deformation of the chip - and thus of the compartments - leads to cellular membrane shear stress and protein aggregation/misfolding in the periplasm.
The aggregated/misfolded proteins are then sensed by the histidine kinase CpxA sensor, which auto-phosphorylates and transfers its phosphate to its corresponding relay protein, CpxR. Upon phosphorylation, CpxR homo-dimerizes.
Our engineered bacteria contain CpxR proteins fused to split fluorescent protein fragments (split IFP1.4) via a 10-amino acid, 2x GGGGS flexible linker. This allows us to detect CpxR dimerization, synonymous periplasmic stress and touch. Moreover, the split protein fragments are reversible. Therefore, when stress is removed, CpxA changes conformation and dephosphorylates CpxR allowing it to dissociate. The signal is shutdown and darkness returns The BioTouch Detector (composed of an inexpensive CMOS called Raspberry Pi, a highly sensitive digital camera with appropriate light filters, and a light emitting source) identifies and processes the position of the light/fluorescence emitted by the BioPad. This information about the position of the light relative to chip is then used to control the associated electronic device.

first second



The HOG Pathway

The HOG (High Osmolarity Glycerol) pathway is a MAPK (Mitogen activated protein kinase) pathway which yeast cells use to coordinate intracellular activities to optimise survival and proliferation in not only hyper-osmotic stress but also heat shock, nitrogen stress and oxidative stress. It is represented below.



HOG_pathway_description
The pathway includes five main proteins:
  • Sho1/Sln1 – Membrane proteins which are classed as STREs (STress Response Elements) which sense the stress and initiate the pathway

  • Ste11 – The MAPKKK which phosphorylates PBS2

  • PBS2 – The MAPKK which phosphorylates HOG1

  • HOG1 – The MAPK which localizes to the nucleus upon phosphorylation and induces target gene transcription



How we engineered the HOG pathway to make our BioPad

Our engineered yeasts cells can be loaded into a microfluidic chip made of small compartments able to contain a few layers of cells. When the surface of the chip is touched, it leads to a deformation of the chip - and thus of its compartments. Since the HOG pathway is reactive to turgor pressure, the pressure applied activates it. Upon induction of the pathway, which is a classical MAP kinase pathway, PBS2 – a MAPKK – is phosphorylated and binds HOG1 – a MAPK – and in turn phosphorylates it.

Therefore, we have fused these two kinases to split fluorescent and luminescent proteins, via a 13-amino acid flexible linker, by homologous recombination. This allows us to detect the phosphorylation of Hog1 by Pbs2 in response to osmotic pressure or touch. We have used split sfGFP and split Renilla luciferase tags on the C-terminals of both proteins.

As in the E.Coli, the split sfGFP is irreversible and was made to show the interaction between our two Pbs2 and Hog1 while we use the reversible split luciferase tags to assess the activation and inactivation of the pathway. In fact, when stress is removed, the signal should decline. The BioTouch Detector is programmed to identify and process the light position and can transmit the information to a computer.




The BioPad Detector


The signals induced by the BioTouch Chip are then processed by our self designed detection system: the BioTouch Detector. The BioTouch Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioTouch Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioTouch Pad. Thanks to this position, we are able to extract information such as giving a computer operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioTouch Pad.

Sponsors