Team:EPF Lausanne/Data

From 2014.igem.org

(Difference between revisions)
 
(131 intermediate revisions not shown)
Line 1: Line 1:
{{CSS/EPFL_head}}
{{CSS/EPFL_head}}
<html>
<html>
-
<style>
+
  <style>
-
#contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki settings --*/
+
  #contentSub, #footer-box, #catlinks, #search-controls, #p-logo, .printfooter, .firstHeading,.visualClear {display: none;} /*-- hides default wiki settings --*/
-
</style>
+
  </style>
-
 
+
  <!--  here ends the section that changes the default wiki template to a white full width background -->
-
<!--  here ends the section that changes the default wiki template to a white full width background -->
+
  <!-- MENU -->
-
 
+
  <nav class="navbar navbar-default navbar_alt" role="navigation">
-
 
+
    <div class="container-fluid">
-
 
+
      <!-- Brand and toggle get grouped for better mobile display -->
-
 
+
      <div class="navbar-header">
-
<!-- MENU -->
+
        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
-
 
+
-
<nav class="navbar navbar-default" role="navigation">
+
-
  <div class="container-fluid">
+
-
    <!-- Brand and toggle get grouped for better mobile display -->
+
-
    <div class="navbar-header">
+
-
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
+
         <span class="sr-only">Toggle navigation</span>
         <span class="sr-only">Toggle navigation</span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
-
      </button>
+
        </button>
-
      <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
+
        <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
-
</a>
+
      </a>
     </div>
     </div>
-
 
     <!-- Collect the nav links, forms, and other content for toggling -->
     <!-- Collect the nav links, forms, and other content for toggling -->
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
     <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
       <ul class="nav navbar-nav navbar-right">
       <ul class="nav navbar-nav navbar-right">
-
    <div class="nav-collapse">
+
        <div class="nav-collapse">
-
      <ul class="nav">
+
          <ul class="nav">
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne">Home</a></li>
-
        <li class="dropdown">
+
            <li class="dropdown">
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
-
          <ul class="dropdown-menu" role="menu">
+
              <ul class="dropdown-menu" role="menu">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
-
          </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
-
        <li class="dropdown">
+
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook" class="dropdown-toggle active" data-toggle="dropdown">Notebook <span class="caret"></span></a>
+
              -->          </ul>
-
          <ul class="dropdown-menu" role="menu">
+
            </li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocol</a></li>
+
              <a href="#" class="dropdown-toggle active" data-toggle="dropdown">Achievements <span class="caret"></span></a>
-
            <li class="active"><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
+
              <ul class="dropdown-menu" role="menu">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Safety</a></li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
-
          </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data" class="active">Data</a></li>
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
-
      <li class="dropdown">
+
              </ul>
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
+
            </li>
-
          <ul class="dropdown-menu" role="menu">
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practices <span class="caret"></span></a>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
+
              <ul class="dropdown-menu" role="menu">
-
          </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
-
      <li class="dropdown">
+
                <!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
          <a href="https://2014.igem.org/Team:EPF_Lausanne/Team" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
+
              -->          </ul>
-
          <ul class="dropdown-menu" role="menu">
+
            </li>
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
+
            <li class="dropdown">
-
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
-
          </ul>
+
              <ul class="dropdown-menu" role="menu">
-
        </li>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
-
    </div>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
-
      </ul>
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
-
    </div><!-- /.navbar-collapse -->
+
              </ul>
-
  </div><!-- /.container-fluid -->
+
            </li>
-
</nav>
+
            <li class="dropdown">
-
 
+
              <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
-
<!-- END MENU -->
+
              <ul class="dropdown-menu" role="menu">
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
-
<!-- ABSTRACT -->
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
-
 
+
              </ul>
-
<div class="whitebg">
+
            </li>
-
 
+
          </div>
-
 
+
        </ul>
-
<!-- RESULTS -->
+
        </div><!-- /.navbar-collapse -->
-
 
+
        </div><!-- /.container-fluid -->
-
 
+
      </nav>
-
 
+
      <!-- END MENU -->
-
<div id="results">
+
      <!-- ABSTRACT -->
-
<div class="container align-left">
+
      <div class="container">
-
 
+
        <div class="box" id="boxbread">
-
 
+
          <ol class="breadcrumb breadcrumb-arrow">
-
 
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne"><i class="glyphicon glyphicon-home"></i> Home</a></li>
-
<h1 class="cntr"> RESULTS </h1>
+
            <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown"><i class="glyphicon glyphicon-star"></i> Achievements <b class="caret"></b></a>
-
 
+
            <ul class="dropdown-menu">
-
<br /><br />
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
-
<br /><br />
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
-
 
+
                <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
-
 
+
            </ul>
-
<h2> <b><u>Characterisation of the CpxR & split IFP1.4 stress-sensitive response </u> </b> </h2>
+
          </li>
-
 
+
          <li class="active"><span><i class="glyphicon glyphicon-folder-open"></i> Data</span></li>
-
<h3> <b>Experiment 1: </b> Promoter characterisation and folding ability of fused GFP to CpxR via 10 amino acid 2 x (GGGGS) flexible linker </h3>
+
        </ol>
-
 
+
      </div>
-
<p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit ameh2t, wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat. Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor, facilisis luctus, metus</p>
+
      <div class="row">
-
 
+
        <div class="col col-md-9">
-
<br /><br />
+
          <div class="whitebg box">
-
<h3><b>Experiment 2: </b>CpxR dimerization & Dimerization Orientation </h3>
+
            <!-- RESULTS -->
-
 
+
              <div class="align-left">
-
<p>
+
-
<u>Introduction</u> <br />
+
<div class="cntr">
-
CpxR is the relay protein in the stress resonsive CpxAR two component regulatory system. It has been shown by split beta galactosidase assay that CpxR dimerizes when phosphorylated (activated) in yersinia pseudotuberculosis. Moreover, following other in vitro FRET studies, it was shown that E.Coli CpxR interacted with itself.  We therefore hypothesised that dimerization would also be true in vivo in E.Coli.</p>
+
<h1><b>DATA</b></h1>
-
 
+
<h2>Engineering stress-related pathways to create a BioPad</h2>
-
 
+
-
<p>
+
-
<u>Aim</u> <br />
+
-
This experiment aimed to determine if and how CpxR dimerised in vivo in E.Coli. This experiment intended to get a first idea of the real-time temporal dynamics of the activation of CpxR (the cytoplasmic relay protein of the CpxA-R pathway) by KCl stress via CpxA (the periplasmic sensor protein of the CpxA-R pathway). This experiment is a first of its kind.
+
-
</p>
+
-
 
+
-
 
+
-
<p>
+
-
<u>Methods</u> <br />
+
-
To evaluate if and how CpxR dimerized under KCl stress, we built by gibson assembly four constructs with the various possible orientations that the split IFP1.4 fragments could have with CpxR: IFP[1] and IFP[2] on the N-terminus of CpxR, IFP[1] on the N-terminus of CpxR and IFP[2] on the C-terminus of CpxR, and finally IFP[1] and IFP[2] on the N-terminus of CpxR. The split IFP fragments were provided by the Michnick Lab, and the CpxR coding region was amplified by PCR from extracted E.Coli genome (Bacterial Genomic Miniprep Kit from Sigma Aldrich). The protocol for stressing the cells and reading the fluorescence can be downloaded <a href="https://static.igem.org/mediawiki/2014/a/a5/EPFL_Protocol_IFP_stress_1.pdf">here</a>.
+
-
</p>
+
-
 
+
-
<p>
+
-
<u>Results</u> <br />
+
-
As seen in the graph bellow, induction of the signal was done at minute 24 (marked via a vertically spoted line). The construct with IFP fragments on the C-termina responded immediately to stress. In a fact we observed a 3 fold signal increase in 2 minutes. All other constructs we observed a low baseline signal non responsive to KCl stress. It is to be noted that the C-termina constructs always had higher signal levels than the other constructs. This leads us to believe that the PBS used to resuspend our cultures led to small levels of stress (the PBS we use does not contain KCl but traces of NaCl). The 30-fold signal increase from the baseline allows us to assert that our constructs responds to KCl stress.
+
-
</p>
+
-
 
+
-
<p>
+
-
<u>Discussion</u> <br />
+
-
We successfully proved that CpxR dimerized in vivo and that dimerization led to close interaction of its C-terminus. This finding suggests that CpxR binds via its C-termina and suggests that this dimerisation mechanisms is the same for other members of the highly conserved OmpR/PhoB subfamily. This system could be implemented to study various other components of the OmpR/PhoB subfamily and thus lead to a new generation of highly senstitive and reactive biosensors.
+
-
</p>
+
-
 
+
-
<div class="container cntr">
+
-
<img src="https://static.igem.org/mediawiki/2014/c/c2/KCL_Construct_Comparison.jpg" alt="Construct Comparison">
+
</div>
</div>
-
 
+
<br />
-
 
+
-
 
+
-
<br /><br />
+
-
 
+
-
<h3><b> Experiment 3: </b>Signal induction by various concentrations of KCl & signal shutdown by centrifugation </h3>
+
-
 
+
-
 
+
-
 
+
-
<p>
+
-
<u>Aim</u> <br />
+
-
Having found that KCl was a good signal inducer for our signal, we decided to characterise our biobrick by testing if the signal could be modulated by various concentrations of KCl and if we were able to remove the signal by centrifugation and medium change.
+
-
 
+
-
To do so, we read  our signal for 20 minutes without stress and then added KCl. At minute 144 we centrifuged our cells and replaced the medium with PBS to be able to get a shutdown of the signal.
+
-
</p>
+
-
 
+
-
<p>
+
-
<u>Methods</u> <br />
+
-
To evaluate if a modulation in KCl concentrations affected the intensity of the intensity of the fluorescent signal, and if a change in medium by centrifugation shutdown the signal; we read our signal on a plate reader for 20 minutes without stress and then added KCl. At minute 144 we centrifuged our cells and replaced the medium with PBS to be able to get a shutdown of the signal. The protocol for this experiment can be downloaded <a href="https://static.igem.org/mediawiki/2014/a/a5/EPFL_Protocol_IFP_stress_1.pdf">here</a>.
+
-
</p>
+
-
<p>
+
-
<u>Results</u> <br />
+
-
We successfully showed that increasing concentrations of KCl led to stronger signals up to a saturation concentration of about 80 mM KCl. Moreover we were able to shut the signal down, thus proving the reversibility of our system. These results prove the reversibility of the split IFP1.4 and suggest that real-time temporal dynamics analysis are possible for our system.
+
-
</p>
+
-
 
+
-
 
+
-
<div class="container cntr">
+
-
<img src="https://static.igem.org/mediawiki/2014/6/61/KCL_titration_green_small_EPFL.jpg" alt="GA1 Shutdown">
+
-
</div>
+
-
 
+
-
 
+
-
<br /><br />
+
-
 
+
-
<h3><b> Experiment 4: </b>Visualization of the the CpxR split IFP1.4 activation by KCl stress  </h3>
+
-
 
+
-
 
+
-
 
+
-
<p>
+
-
<u>Aim</u> <br />
+
-
 
+
-
</p>
+
-
 
+
-
 
+
-
<p>
+
-
<u>Results</u> <br />
+
-
 
+
-
</p>
+
-
 
+
-
<!--CAROUSEL -->
+
-
 
+
-
<!-- <canvas id="biopad"></canvas> -->
+
<!--
<!--
-
<div id="carouselSection" class="cntr">
+
<h3><b>Bacterial Biosensors </b> </h3>
-
    <div id="carousel" class="carousel slide">
+
-
      <div class="carousel-inner">
+
<br />
-
        <div class="item active"> -->
+
-
<div class="container">
+
<div class = "cntr">
-
<p>
+
<img src="https://static.igem.org/mediawiki/2014/f/f0/Description_exp_IFP_EPFL.png" alt="Exp_IFP" width="1250">
-
  <div class="pull-left">
+
<figcaption></figcaption>
-
  <img src="https://static.igem.org/mediawiki/2014/0/07/EPFL_2014_03_10_2014_Experiment-46.jpg" width="612">
+
-
 
+
-
  </div>
+
-
 
+
-
  <div class="pull-right">
+
-
  <img src="https://static.igem.org/mediawiki/2014/e/ec/EPFL_2014_03_10_2014_Experiment-24.jpg" width="612">
+
-
 
+
-
 
+
-
  </div>
+
-
</p>
+
</div>
</div>
 +
<br />
-
<div class="container">
 
-
<p>
 
-
  <div class="pull-left">
 
-
  <img src="https://static.igem.org/mediawiki/2014/d/de/EPFL_2014_03_10_2014_Experiment-34.jpg" width="612">
 
-
  </div>
 
-
  <div class="pull-right">
+
-->
-
  <img src="https://static.igem.org/mediawiki/2014/f/fd/EPFL_2014_03_10_2014_Experiment-35.jpg" width="612">
+
<div class="cntr">
-
  </div>
+
<a href="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" data-lightbox="cpxr" data-title="Touch response in yeast and bacteria">
-
</p>
+
<img src="https://static.igem.org/mediawiki/2014/f/fd/CpxR-HOG.jpg" alt="touch response" class="img-responsive img-border" /></a>
 +
<figcaption class="cntr">Touch response in yeast and bacteria</figcaption>
</div>
</div>
-
<div class="container">
+
<br/><br/>
-
<p>
+
<h3 id="characterization">Our BioBricks</h3>
-
  <div class="pull-left">
+
-
  <img src="https://static.igem.org/mediawiki/2014/0/08/EPFL_2014_03_10_2014_Experiment-37.jpg" width="612">
+
-
  </div>
+
-
  <div class="pull-right">
 
-
  <img src="https://static.igem.org/mediawiki/2014/a/a7/EPFL_2014_03_10_2014_Experiment-38.jpg" width="612">
 
-
  </div>
 
-
</p>
 
-
</div>
 
-
<div class="container">
+
<h4 id="doc_and_sub"><b>New Parts</b> </h4>
-
<p>
+
-
  <div class="cntr">
+
-
  <img src="https://static.igem.org/mediawiki/2014/2/2e/EPFL_2014_03_10_2014_Picture3.jpg" width="612">
+
-
  </div>
+
-
</p>
+
-
</div>
+
 +
<ul>
 +
<li>Submitted a BioBrick consisting of CpxR under Arabinose Promoter (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486001">BBa_K1486001</a>). Reporter sfGFP was fused to CpxR's N terminus (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486002">BBa_K1486002</a>) and C terminus (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486005">BBa_K1486005</a>), to evaluate the expression of our construct and characterize the Arabinose promoter in <i>E. coli</i>.</li><br/>
-
 
+
<li>Submitted four BioBricks coding for CpxR fused to one of the two fragments of the split reporter Infrared Fluorescent Protein (IFP1.4). Fragments IFP1 and IFP2 (corresponding to the N and C terminal of the IFP respectively) were fused at the N or C terminal of the CpxR, leading two four different constructs: CpxR-IFP1 (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486012">BBa_K1486012</a>), CpxR-IFP2 (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486013">BBa_K1486013</a>), IFP1-CpxR (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486014">BBa_K1486014</a>) and IFP2-CpxR (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486015">BBa_K1486015</a>). Sequences are under arabinose promoter. These Biobricks are construction intermediates to build our four final constructs below. </li><br/>
-
  <!--   </div> -->
+
<li>Submitted four BioBricks, which are the final constructs of the IFP subproject. Each BioBrick codes for two proteins: CpxR fused to IFP1, and CpxR fused to IFP2. The different combinations with the split at the C or N terminal of CpxR lead to four constructs: CpxR-IFP1 & CpxR-IFP2 (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486056">BBa_K1486056</a> and <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486008">BBa_K1486008</a>), IFP1-CpxR & IFP2-CpxR (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486009">BBa_K1486009</a>), IFP1-CpxR & Cpxr-IFP2 (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486010">BBa_K1486010</a>), CpxR-IFP1 & IFP2-CpxR (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486011">BBa_K1486011</a>). Sequences are under arabinose promoter.
-
    <!--  <a class="carousel-control left" href="#carousel" data-slide="prev">&lsaquo;</a> -->
+
These BioBricks aimed at first to study the orientation of CpxR's homodimerization by observing the IFP signal measured from the four strains under stress. We discovered that only the orientations with both parts of the split are at the C terminal of the CpxR lead to an IFP signal when cells are stressed. Since all of these Biobricks are incompatible with RFC[10], we removed illegal restriction sites from <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486008">BBa_K1486008</a> and created <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486056">BBa_K1486056</a> (version without PstI illegal restriction enzyme sites). The experiment mentioned above was repeated with <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486056">BBa_K1486056</a> and identical results were reproduced. All further experiments were done with <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486056">BBa_K1486056</a>.  </li><br/>
-
  <!--   <a class="carousel-control right" href="#carousel" data-slide="next">&rsaquo;</a> -->
+
-
  <!--  </div> -->
+
-
<!-- </div> -->  
+
-
<div class="container cntr">
 
-
</div><br \>
+
<li>CpxR reporters were made with the promoter in forward and reverse direction, respectively <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486049">BBa_K1486049</a> and <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486050">BBa_K1486050</a>. These Biobricks are improvements of <a target="_blank" href="http://parts.igem.org/Part:BBa_K339007">BBa_K339007</a> </li><br/>
-
<h2> <b><u>Characterisation of the split luciferase </u> </b> </h2>
+
<li>Submitted the two parts of the split yeast optimized superfolder GFP  (N-terminal part (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486029">BBa_K1486029</a>) and C-terminal part (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486035">BBa_K1486035</a>)) created from plasmids pFA6a-link-yoSuperfolderGFP-Kan (44901) and pFA6a-link-yoSuperfolderGFP-Ura (44873) ordered from Addgene. We attached them to the ADH1 terminator, regulating the transcripion of our fusion proteins and to the selection markers Kan and Ura3. We stressed our cells under various conditions to trigger the HOG pathway and were able to show that interaction of Hog1 and Pbs2 in response to osmotic stress allowed the re-assembly of the full GFP protein.
 +
</li><br />
-
<h3><b>Experiment 1: </b>CheY/CheZ fused to split Firefly/Renilla luciferase, and full Firefly/Renilla luciferase characterisation </h3>
+
<li>Submitted a BioBrick (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486043">BBa_K1486043</a>) containing two leucine zipper sequences, each fused with one moiety of renilla Luciferase, to test the efficiency of the split renilla luciferase in order to use it for a complementation assay.</li>
 +
</ul><br/>
-
<p><u>Introduction</u> <br \>
 
-
CheY and CheZ are two proteins involved in the bacterial chemotaxis pathway. It has been shown by split luciferase complementation assay that these two proteins are not interacting in presence of chemoattractant, but start to interact (CheZ being the phosphatase of CheY) in absence of chemoattractant or presence of chemorepellent. Based on the work of Waldor Laboratory, we wanted to redo and adapt the experiment to test our own splits.<br \> <br \>
 
-
<u>Aim</u> <br \>
+
<br />
-
This experiment aimed to test the efficiency of split Renilla luciferase and split Firefly luciferase. We wanted to study the speed of the signal and the amount of substrate needed to have a performant response. <br \> <br \>
+
-
<u>Method</u> <br \>
+
<h4 id="improvement"><b>Further Characterization and Improvement of Parts Already in the Registry</b> </h4>
-
To proceed to this complementation assay, we built two constructs, one to test split Renilla Luciferase and the other for split Firefly Luciferase The CheY was fused to the N-terminal part of each split, while the CheZ was fused to the C-terminal part. We used the full luciferases (Renilla : BBa_K1486022 and Firefly : BBa_K325108 from Cambridge 2010 team) as positive controls and the non-fused splits (Renilla : BBa_K1486021 and Firefly : BBa_K1486018) as negative controls.<br \> <br \>
+
<p>
 +
<ul>
 +
<li>After several experiments with stress induction we realised that the biobrick <a target="_blank" href="http://parts.igem.org/Part:BBa_K339007"> BBa_K339007 </a> was missing its CpxR responsive promoter. So we repaired it and sent it as <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486048">BBa_K1486048</a>. The biobrick was further engineered by testing the native CpxR target sequence that is found in front of CpxA in the E.coli genome (as Calgary's <a target="_blank" href="http://parts.igem.org/Part:BBa_K339007"> BBa_K339007 </a> did not include the whole sequence). These are the biobricks <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486049">BBa_K1486049</a> and <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486050">BBa_K1486050</a>, with the promoter in forward and reverse direction respectively.</li><br/>
-
The bioluminescence assay was performed as described <a href="https://static.igem.org/mediawiki/2014/6/6d/Protocol_-_Bioluminescence_assay.pdf">here</a>. <br \>
+
<li>Submitted the two parts of the split of <a target="_blank" href="http://parts.igem.org/Part:BBa_K325108">EPIC Firefly luciferase</a> (N-terminal part (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486016">BBa_K1486016</a>) and C-terminal part (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486017">BBa_K1486017</a>)) from Cambridge 2010. The plasmid (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486018">BBa_K1486018</a>) containing the two parts of the split separated by a spacer can be very useful as a negative control or to establish a background noise for a complementation assay experiment.</li><br/>
-
The constructs were designed and assembled as described <a href="https://static.igem.org/mediawiki/2014/3/3b/Constructs_design_CheYCheZ.pdf">here</a>.<br \>.<br \> <br \>
+
<li>Compared the <a target="_blank" href="http://parts.igem.org/Part:BBa_K325108">EPIC Firefly luciferase</a> from Cambridge 2010 team to the renilla luciferase (<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486022">BBa_K1486022</a>) in the same conditions, to determine which one is best suited for a complementation assay experiment. The full and split luciferases have been compared. Renilla luciferase (full and splits(<a target="_blank" href="http://parts.igem.org/Part:BBa_K1486021">BBa_K1486021</a>)) have been submitted.</li>
 +
</ul></p><br/>
-
<u>Results</u> <br \>
 
-
As shown in the graphs below (fig.1A and 1B), we couldn't really observe a high signal for our complementation assay. However, the signal being higher than the blanks, it is an encouraging sign that the splits luciferase can be used for other experiments of this kind. A possible explanation for these results is that arabinose being a chemoattractant, we might need to do more wash steps with PBS to get rid of the arabinose before taking the measurements. Moreover, CheY and CheZ being endogenously expressed in bacteria, the edogenous proteins could interfere with our fusion proteins and weaken our signal. This complementation assay should be tested with CheY/CheZ knock out strains, as it was done in Waldor Laboratory.<br \>
 
-
<div class="container">
+
<h3 id="title_microfluidics"><b>Microfluidics</b> </h3>
<p>
<p>
-
  <div class="pull-left">
+
<ul>
-
  <img src="https://static.igem.org/mediawiki/2014/3/30/Renilla-CheYCheZexp.png" width="612">
+
<li>Design of <a target="_blank" href="https://static.igem.org/mediawiki/2014/b/b7/SmashColi_iGEM_EPFL_2014.zip">SmashColi</a> - a testing chip to analyse the effects of different mechanical stresses on cells. This chip was used to characterize <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486056">BBa_K1486056</a> and <a target="_blank" href="http://parts.igem.org/Part:BBa_K1486013">BBa_K1486013</a>. </li>
 +
<li>Design of <a target="_blank" href="https://static.igem.org/mediawiki/2014/7/79/FilterColi_iGEM_EPFL_2014.zip">FilterColi</a> - a testing chip to analyse the effects of different osmotic stresses on cells</li>
 +
<li>Design of <a target="_blank" href="https://static.igem.org/mediawiki/2014/3/33/TheBioPad_iGEM_EPFL_2014.zip">The BioPad</a> - a large-scaled chip implemented to be the touch-senstive interface of our final trackpad</li>
 +
<li>Design of <a target="_blank" href="https://static.igem.org/mediawiki/2014/b/b3/CleanColi_iGEM_EPFL_2014.zip">CleanColi</a> - an "on-chip waste treatment" unit that can be integrated at the end of any chip to decontaminate GMOs or pathogens</li>
 +
<br /><p>To find out more about what we did for each chip, click <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Results#Micro_exp1">here</a></p>
-
  </div>
+
</ul></p><br/>
-
  <div class="pull-right">
+
<h3 id="title_human_practices"><b>Human Practices</b> </h3><br/>
-
  <img src="https://static.igem.org/mediawiki/2014/f/f9/Firefly-CheYCheZexp.png" width="612">
+
<ul>
 +
<li>Met with a journalist from the biggest newspaper of our region (Le Temps) and got an article about our project.</li>
 +
<li>Our work was commented by Bent Stumpe, inventor of the touchscreen, as well as Rolf Heuer, the current director of the CERN, in Geneva.</li>
 +
<li>Organized an outreach event with 80 highschool students at EPFL, teaching them about synthetic biology as well as laboratory techniques and made them participate in a game called « <a target="_blank" href="https://static.igem.org/mediawiki/2014/7/76/Mini_iGEM_projects.pdf">mini iGEM</a> ».</li>
 +
<li>Presented iGEM and our work at the Hackuarium, the new BioHackerspace in Lausanne.</li>
 +
</ul>
 +
<br />
 +
              </div>
 +
          </div>
 +
        </div>
 +
        <div class="col col-md-3">
 +
          <nav id="affix-nav" class="sidebar hidden-sm hidden-xs">
 +
            <ul class="nav sidenav box" data-spy="affix" data-offset-top="200" data-offset-bottom="600">
 +
              <li><a href="#characterization">Characterization</a>
 +
                <ul class="nav">
 +
                  <li><a href="#doc_and_sub">New Parts</a></li>
 +
                  <li><a href="#improvement">Existing Parts</a></li>
 +
                </ul>
 +
            </li>
 +
            <li><a href="#title_microfluidics">Microfluidics</a></li>
 +
            <li><a href="#title_human_practices">Human Practices</a></li>
 +
        </ul>
 +
      </nav>
 +
    </div>
   </div>
   </div>
-
</p>
 
-
</div><br \>
 
-
 
-
We also could determine which of the luciferases would best suit our following experiments. As shown in fig. 2, for the same concentration of substrate, we see that firefly luciferase has a more stable and higher signal.  Moreover, the difference between the background noise (negative control, non fused split luciferase) and the full luciferase is bigger for Firefly luciferase, which is also preferable.<br \>
 
-
 
-
<div class="container">
 
-
<p>
 
-
  <div class="cntr">
 
-
  <img src="https://static.igem.org/mediawiki/2014/f/f7/Controls-CheYCheZexp.png" width="612">
 
-
  </div>
 
-
</p>
 
-
</div></p>
 
-
 
-
<br />
 
-
 
-
<h2> <b><u>Microfluidic stuff ? </u> </b> </h2>
 
-
<h3><b>Experiment 1: </b></h3>
 
-
 
-
<p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat. Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor, facilisis luctus, metus</p>
 
-
 
-
<h2> <b><u>Yeast stuff ?</u> </b> </h2>
 
-
<h3><b>Experiment 1: </b></h3>
 
-
 
-
<p>Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat. Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor, facilisis luctus, metus</p>
 
-
 
-
 
</div>
</div>
-
</div>
 
-
 
-
</div>
 
-
 
<!-- END ABSTRACT -->
<!-- END ABSTRACT -->
-
 
</html>
</html>
{{CSS/EPFL_bottom}}
{{CSS/EPFL_bottom}}

Latest revision as of 03:21, 18 October 2014

DATA

Engineering stress-related pathways to create a BioPad


touch response
Touch response in yeast and bacteria


Our BioBricks

New Parts

  • Submitted a BioBrick consisting of CpxR under Arabinose Promoter (BBa_K1486001). Reporter sfGFP was fused to CpxR's N terminus (BBa_K1486002) and C terminus (BBa_K1486005), to evaluate the expression of our construct and characterize the Arabinose promoter in E. coli.

  • Submitted four BioBricks coding for CpxR fused to one of the two fragments of the split reporter Infrared Fluorescent Protein (IFP1.4). Fragments IFP1 and IFP2 (corresponding to the N and C terminal of the IFP respectively) were fused at the N or C terminal of the CpxR, leading two four different constructs: CpxR-IFP1 (BBa_K1486012), CpxR-IFP2 (BBa_K1486013), IFP1-CpxR (BBa_K1486014) and IFP2-CpxR (BBa_K1486015). Sequences are under arabinose promoter. These Biobricks are construction intermediates to build our four final constructs below.

  • Submitted four BioBricks, which are the final constructs of the IFP subproject. Each BioBrick codes for two proteins: CpxR fused to IFP1, and CpxR fused to IFP2. The different combinations with the split at the C or N terminal of CpxR lead to four constructs: CpxR-IFP1 & CpxR-IFP2 (BBa_K1486056 and BBa_K1486008), IFP1-CpxR & IFP2-CpxR (BBa_K1486009), IFP1-CpxR & Cpxr-IFP2 (BBa_K1486010), CpxR-IFP1 & IFP2-CpxR (BBa_K1486011). Sequences are under arabinose promoter. These BioBricks aimed at first to study the orientation of CpxR's homodimerization by observing the IFP signal measured from the four strains under stress. We discovered that only the orientations with both parts of the split are at the C terminal of the CpxR lead to an IFP signal when cells are stressed. Since all of these Biobricks are incompatible with RFC[10], we removed illegal restriction sites from BBa_K1486008 and created BBa_K1486056 (version without PstI illegal restriction enzyme sites). The experiment mentioned above was repeated with BBa_K1486056 and identical results were reproduced. All further experiments were done with BBa_K1486056.

  • CpxR reporters were made with the promoter in forward and reverse direction, respectively BBa_K1486049 and BBa_K1486050. These Biobricks are improvements of BBa_K339007

  • Submitted the two parts of the split yeast optimized superfolder GFP (N-terminal part (BBa_K1486029) and C-terminal part (BBa_K1486035)) created from plasmids pFA6a-link-yoSuperfolderGFP-Kan (44901) and pFA6a-link-yoSuperfolderGFP-Ura (44873) ordered from Addgene. We attached them to the ADH1 terminator, regulating the transcripion of our fusion proteins and to the selection markers Kan and Ura3. We stressed our cells under various conditions to trigger the HOG pathway and were able to show that interaction of Hog1 and Pbs2 in response to osmotic stress allowed the re-assembly of the full GFP protein.

  • Submitted a BioBrick (BBa_K1486043) containing two leucine zipper sequences, each fused with one moiety of renilla Luciferase, to test the efficiency of the split renilla luciferase in order to use it for a complementation assay.


Further Characterization and Improvement of Parts Already in the Registry

  • After several experiments with stress induction we realised that the biobrick BBa_K339007 was missing its CpxR responsive promoter. So we repaired it and sent it as BBa_K1486048. The biobrick was further engineered by testing the native CpxR target sequence that is found in front of CpxA in the E.coli genome (as Calgary's BBa_K339007 did not include the whole sequence). These are the biobricks BBa_K1486049 and BBa_K1486050, with the promoter in forward and reverse direction respectively.

  • Submitted the two parts of the split of EPIC Firefly luciferase (N-terminal part (BBa_K1486016) and C-terminal part (BBa_K1486017)) from Cambridge 2010. The plasmid (BBa_K1486018) containing the two parts of the split separated by a spacer can be very useful as a negative control or to establish a background noise for a complementation assay experiment.

  • Compared the EPIC Firefly luciferase from Cambridge 2010 team to the renilla luciferase (BBa_K1486022) in the same conditions, to determine which one is best suited for a complementation assay experiment. The full and split luciferases have been compared. Renilla luciferase (full and splits(BBa_K1486021)) have been submitted.


Microfluidics

  • Design of SmashColi - a testing chip to analyse the effects of different mechanical stresses on cells. This chip was used to characterize BBa_K1486056 and BBa_K1486013.
  • Design of FilterColi - a testing chip to analyse the effects of different osmotic stresses on cells
  • Design of The BioPad - a large-scaled chip implemented to be the touch-senstive interface of our final trackpad
  • Design of CleanColi - an "on-chip waste treatment" unit that can be integrated at the end of any chip to decontaminate GMOs or pathogens

  • To find out more about what we did for each chip, click here


Human Practices


  • Met with a journalist from the biggest newspaper of our region (Le Temps) and got an article about our project.
  • Our work was commented by Bent Stumpe, inventor of the touchscreen, as well as Rolf Heuer, the current director of the CERN, in Geneva.
  • Organized an outreach event with 80 highschool students at EPFL, teaching them about synthetic biology as well as laboratory techniques and made them participate in a game called « mini iGEM ».
  • Presented iGEM and our work at the Hackuarium, the new BioHackerspace in Lausanne.

Sponsors