Team:EPF Lausanne

From 2014.igem.org

(Difference between revisions)
 
(468 intermediate revisions not shown)
Line 7: Line 7:
<!--  here ends the section that changes the default wiki template to a white full width background -->
<!--  here ends the section that changes the default wiki template to a white full width background -->
 +
<!-- MENU -->
 +
<nav class="navbar navbar-default" role="navigation">
 +
  <div class="container-fluid">
 +
    <!-- Brand and toggle get grouped for better mobile display -->
 +
    <div class="navbar-header">
 +
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 +
        <span class="sr-only">Toggle navigation</span>
 +
        <span class="icon-bar"></span>
 +
        <span class="icon-bar"></span>
 +
        <span class="icon-bar"></span>
 +
      </button>
 +
      <a class="navbar-brand" href="https://igem.org/Main_Page" target="_blank"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
 +
</a>
 +
    </div>
-
<!-- beginning of your page -->
+
    <!-- Collect the nav links, forms, and other content for toggling -->
 +
    <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 +
      <ul class="nav navbar-nav navbar-right">
 +
    <div class="nav-collapse">
 +
      <ul class="nav">
 +
        <li><a href="https://2014.igem.org/Team:EPF_Lausanne" class="active">Home</a></li>
 +
        <li class="dropdown">
 +
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <span class="caret"></span></a>
 +
          <ul class="dropdown-menu" role="menu">
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Overview">Overview</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">Stress Responsive Bacteria</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">Osmo Responsive Yeast</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">Microfluidics</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">Hardware</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Applications">Applications</a></li>
-
<!-- menu -->
 
-
    <nav class="navbar navbar-default navbar-fixed-top" role="navigation">
 
-
        <div class="container">
 
-
            <div class="navbar-header">
 
-
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-ex1-collapse">
 
-
                    <span class="sr-only">Toggle navigation</span>
 
-
                    <span class="icon-bar"></span>
 
-
                    <span class="icon-bar"></span>
 
-
                    <span class="icon-bar"></span>
 
-
                </button>
 
-
                <a class="navbar-brand" href="https://igem.org/Main_Page"><img src="https://static.igem.org/mediawiki/igem.org/6/60/Igemlogo_300px.png" width="50" /></a>
 
-
            </div>
 
-
            <!-- Collect the nav links, forms, and other content for toggling -->
+
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
             <div class="collapse navbar-collapse navbar-right navbar-ex1-collapse">
+
-->         </ul>
-
                <ul class="nav navbar-nav">
+
         </li>
-
                    <li><a href="#about">Home</a>
+
-
                    </li>
+
-
                    <li><a href="#services">Project</a>
+
-
                    </li>
+
-
                    <li><a href="#contact">Parts</a>
+
-
                    </li>
+
-
                    <li><a href="#contact">Team</a>
+
-
                    </li>
+
-
                    <li><a href="#contact">Notebook</a>
+
-
                    </li>
+
-
                    <li><a href="#contact">Safety</a>
+
-
                    </li>
+
-
                </ul>
+
-
            </div>
+
-
            <!-- /.navbar-collapse -->
+
-
        </div>
+
-
         <!-- /.container -->
+
-
    </nav>
+
-
    <div class="intro-header">
 
-
        <div class="container">
+
      <li class="dropdown">
 +
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Achievements <span class="caret"></span></a>
 +
          <ul class="dropdown-menu" role="menu">
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Results">Results</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Data">Data</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Judging">Judging</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Parts">Parts</a></li>
 +
          </ul>
 +
        </li>
-
            <div class="row">
+
        <li class="dropdown">
-
                <div class="col-lg-12">
+
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practices <span class="caret"></span></a>
-
                    <div class="intro-message">
+
          <ul class="dropdown-menu" role="menu">
-
                        <h1>BioPad</h1>
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
                        <hr class="intro-divider">
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
-
                        <h3>EPFL</h3>
+
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
-
                        <ul class="list-inline intro-social-buttons">
+
-
                        </ul>
+
<!--            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
-
                    </div>
+
-->          </ul>
-
                </div>
+
        </li>
-
            </div>
+
-
        </div>
+
      <li class="dropdown">
-
        <!-- /.container -->
+
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook <span class="caret"></span></a>
 +
          <ul class="dropdown-menu" role="menu">
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Bacteria">Bacteria</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Yeast">Yeast</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook/Microfluidics">Microfluidics</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Protocol">Protocols</a></li>
 +
          </ul>
 +
        </li>
 +
      <li class="dropdown">
 +
          <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <span class="caret"></span></a>
 +
          <ul class="dropdown-menu" role="menu">
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook">Timeline</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Team">Meet us!</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Attributions">Attributions</a></li>
 +
            <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Acknowledgments">Acknowledgments</a></li>
 +
          </ul>
 +
        </li>
     </div>
     </div>
-
    <!-- /.intro-header -->
+
      </ul>
 +
    </div><!-- /.navbar-collapse -->
 +
  </div><!-- /.container-fluid -->
 +
</nav>
 +
<!-- END MENU -->
 +
<!-- CAROUSEL -->
 +
<div id="carouselSection" class="cntr">
 +
    <div id="carousel" class="carousel slide">
 +
      <div class="carousel-inner">
 +
        <div class="item active">
 +
        <canvas id="biopad"></canvas><img src="https://static.igem.org/mediawiki/2014/b/b0/Epfl_slide1.png" alt="" id="slide1">
 +
        </div>
 +
        <div class="item">
 +
          <div class="embed-container"><iframe src="//www.youtube.com/embed/VhA6TgPkYpg" frameborder="0" id="youtubeplayer" allowfullscreen></iframe></div><img src="https://static.igem.org/mediawiki/2014/f/f2/Slideyoutube.png" alt="">
 +
        </div>
 +
        <div class="item">
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook#35">
 +
        <img src="https://static.igem.org/mediawiki/2014/4/49/Timeline_carroussel.png" alt="" id="slide3">
 +
</a>
 +
        </div>
-
 
+
         <div class="item">
-
 
+
        <img src="https://static.igem.org/mediawiki/2014/d/d4/Giflogo.JPG" alt="" id="slide4">
-
    <div class="content-section-a">
+
-
 
+
-
         <div class="container">
+
-
 
+
-
            <div class="row">
+
-
            <!--    <div class="col-lg-5 col-sm-6">  -->
+
-
                    <hr class="section-heading-spacer">
+
-
                    <div class="clearfix"></div>
+
-
                    <h2 class="section-heading">Introduction</h2>
+
-
                    <p class="lead">
+
-
 
+
-
 
+
-
<!-- OLD VERSION -->
+
-
<!--
+
-
This year’s EPFL iGEM team is designing the world’s first “Bio Pad”: a biological trackpad that will allow users to control a computer via a “living” interface.
+
-
                        <br /><br />
+
-
                        Our project aims to deliver a solid Proof of Concept for biological track pad, with applications ranging from the study of genes to novel ways to screen for drugs.
+
-
<br /><br />
+
-
-->
+
-
 
+
-
<!-- NEW INTRO -->
+
-
Most sciences are able to detect and process signals in a fast and efficient way. Biology lacks this ability as signal detection and processing requires large amounts of time leading to potential inaccuracies and interferences from external sources. We aim to improve this and make signal induction faster and more accurate while designing an innovating new biological machine using protein complementation techniques. <br /><br />
+
-
As a proof of concept of this new way of viewing biology, this year’s EPFL iGEM team aims to build the first biological touchpad, hereafter referred as the BioPad, allowing users to control electronics in real time through living organisms.<br /><br />
+
-
On top of its potential use a touchpad, the BioPad will have several applications: deliver a cheap, fast, efficient, and accurate antibiotic screening system; as well as providing a new way for studying genes by allowing the study of the the relationship between genes and their corresponding activating signals.
+
-
</p>
+
-
 
+
-
 
+
-
                </div>
+
-
                <div class="col-lg-5 col-lg-offset-3 col-sm-1">
+
-
  <img class="img-responsive" src="https://static.igem.org/mediawiki/2014/5/54/Campus.png" alt="">
+
-
                </div>
+
-
            </div>
+
-
 
+
         </div>
         </div>
-
 
+
      <div class="item">
-
        <!-- /.container -->
+
<a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">
-
 
+
        <img src="https://static.igem.org/mediawiki/2014/a/ad/Citations_carousel.png" alt="" id="slide5">
-
    </div>
+
</a>
-
    <!-- /.content-section-a -->
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
<!-- TED ADDED CONTENT -->
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
<div class="content-section-a">
+
-
 
+
-
        <div class="container">
+
-
 
+
-
            <div class="row">
+
-
                    <hr class="section-heading-spacer">
+
-
                    <div class="clearfix"></div>
+
-
                    <h2 class="section-heading">The Bio Pad</h2>
+
-
                    <p class="lead">
+
-
 
+
-
 
+
-
<!-- NEW INTRO -->
+
-
Our biological Touch Pad will allow the control of electronic by emitting light at the specific location where the Pad has been touched. Light emission is possible by engineering reporter proteins such as the firefly Luciferase, the Renilla luciferase, the Infrared fluorescent proteins, and even the superfolded GFP.
+
-
We split the reporter proteins and fused them to an E.Coli endogenous protein involved in the regulation of extracytoplasmic stress. The protein of interest is CpxR, a component of the CpxA-CpxR two-component regulatory system.<br /><br />
+
-
 
+
-
On top of developing the biological components allowing fast response to stimuli, we engineered a small, cheap and easy to use “microscope” mainly made of a small camera to detect the position of the emitted light, process the information and instruct the associated electronic device that the user is touching the BioPad a given position.
+
-
 
+
-
</p>
+
-
 
+
         </div>
         </div>
-
        <!-- /.container -->
 
 +
     
 +
      </div>
 +
      <a class="carousel-control left" href="#carousel" data-slide="prev">&lsaquo;</a>
 +
      <a class="carousel-control right" href="#carousel" data-slide="next">&rsaquo;</a>
     </div>
     </div>
-
    <!-- /.content-section-a -->
+
</div>
 +
<!-- END CAROUSEL -->
 +
<!-- ABSTRACT -->
 +
<div id="project" class="whitebg">
 +
<div class="container align-left">
 +
<h1 class="cntr"> Our project in a nutshell</h1>
 +
<br />
 +
<br />
 +
<div class="pull-left">
 +
<!--<img src="https://static.igem.org/mediawiki/2014/c/c3/PCA_EPFL.png" alt="PCA"> -->
 +
<!--<img src="https://static.igem.org/mediawiki/2014/5/56/EPFL_interaction_IFP_cartoon.gif" alt="EPFL_interaction_IFP_cartoon" width="400"> -->
 +
<!--<img src="https://static.igem.org/mediawiki/2014/1/11/Interaction_test_11_white_EPFL.gif" alt="EPFL_interaction_IFP_cartoon" width="500">-->
 +
<br />
 +
<div class="img-left pull-left cntr"><img src="https://static.igem.org/mediawiki/2014/0/0f/Interaction_test_11_cyan_white_bg_bigger.gif" alt="EPFL_interaction_IFP_cartoon" class="img-border" style="margin-top: 0px;" height="330" /><br />
 +
<figcaption class="cntr">Association of split IFP 1.4 fragments</figcaption></div>
 +
</div>
 +
<p class="lead text-justify">
 +
The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining protein complementation techniques with biosensors to achieve fast spatiotemporal analysis of cell responses to stimuli. In other words, we fused complementary reporter protein fragments to interacting proteins. The presence of a given stimulus leads to the interaction of the proteins of interest thus allowing the fused split complements to re-acquire their functional conformation and emit signal. We thereby are able to detect signal dynamics by relying on much faster post-transcriptional modifications rather than slow traditional reporter transcription.
 +
<!--
 +
we are able to detect signal dynamics thanks to the association of the reporter fragments. We thereby rely on much faster post-transcriptional modifications to generate signals rather than traditional reporter transcription.
 +
-->
 +
<!--
 +
The principle is the following: two complementary fragments of a reporter protein are fused to interacting proteins. When the interaction is stimulated, the two fragments associate, thereby reconstituting the reporter signal in a much faster way than traditional post-transcriptional reporters.
 +
-->
 +
<br /><br />
 +
As a proof-of-concept, we aimed to develop the first BioPad: a biological trackpad made of a microfluidic chip, touch-responsive organisms and a signal detector. To make our organisms touch-sensitive, we engineering two stress-related pathways in <i>E. coli</i> and <i>S. cerevisiae</i>.<!--In <i>E. coli</i>, we engineered the Cpx Pathway - a two-component regulatory system responsive to envelope stress. In <i>S. cerevisiae</i>, we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress.--> As for the reporter proteins, we worked mainly with fluorescent proteins but also implemented a split luciferase complementation assay. To learn more about the various components of our project, check out our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Overview">overview section</a>, as well as the different <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Parts">parts</a> submitted by our team. If you are a judge, you might also be interested in our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Results">results page</a>, our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Data">data page</a> and our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Judging">judging form</a>. </p>
 +
<!--
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/5/5c/71996_project2.jpg" alt="CpxAR pathway">
 +
</div>
 +
-->
-
<div class="content-section-a">
+
<div class="clearfix"></div>
-
        <div class="container">
+
<!-- COMMENT TEXT
-
 
+
<h2>Why a BioPad?</h2>
-
            <div class="row">
+
-
                    <hr class="section-heading-spacer">
+
-
                    <div class="clearfix"></div>
+
-
                    <h2 class="section-heading">The CpxA-R Pathway</h2>
+
-
                    <p class="lead">
+
-
 
+
-
 
+
-
<!-- CpxA-CpxR PATHWAY DESCRIPTION -->
+
-
 
+
-
The natural function of the CpxA­-CpxR two component regulatory system in bacteria is to control the expression of ‘survival’ genes whose products act in the periplasm to maintain membrane integrity. This ensures continued bacterial growth even in environments with harmful extracytoplasmic stresses.
+
-
The CpxA-­CpxR two component regulatory system belongs to the class I histidine kinases and includes three main proteins:
+
-
 
+
-
<ul>
+
-
<li>
+
-
<p class="lead"> CpxA -­ an integral inner­membrane sensor kinase, which activates and auto­phosphorylates when sensing misfolded proteins in the E.Coli periplasm. CpxA transduces its signal through the membrane to activate the cytoplasmic CpxR response regulator by a phosphotransfer reaction. </p> </li>
+
-
 
+
-
<li><p class="lead"> CpxR ­- CpxA’s corresponding cytoplasmic response regulator belongs to the OmpR/PhoB family of winged­helix­turn­helix transcriptional response regulators and is phosphorylated by CpxA in the presence of extracytoplasmic stresses. Phosphorylation induces CpxR’s homo­dimerization, and activation as a transcription factor. Phosphorylated CpxR then binds to the promoters of genes coding for several protein folding and degradation factors that operate in the periplasm. </p> </li>
+
-
 
+
-
<li> <p class="lead"> CpxP -­ an inhibitor of CpxA that we suspect to actively compete with misfolded proteins (CpxP is a chaperone).</p>
+
-
 
+
-
</li>
+
-
</ul>
+
 +
<div class="pull-right">
 +
<a href="https://static.igem.org/mediawiki/2014/8/83/Higging-microfluidics-2.jpg" data-lightbox="image-1" data-title="Microfluidics chip"><img src="https://static.igem.org/mediawiki/2014/8/83/Higging-microfluidics-2.jpg" alt="Microfluidics" width="300"></a>
 +
</div>
 +
<p class="lead">The biological concepts behind the BioPad project have applications in basic and applied sciences. From a scientific perspective, the ideas introduced and implemented by our project are novel and promising for future applications. The BioPad is also an interesting concept that will encourage public awareness of synthetic biology. The tangibility of the project will allow the general public to look at synthetic biology in a better way, as people will understand how great genetically modified organisms are! To get down the basics, the combination of novel biological concepts, a cool idea, and the community awareness that our project provides, makes the BioPad project perfect an ideal project for iGEM!
</p>
</p>
-
        </div>
+
<br />
-
        <!-- /.container -->
+
-
    </div>
+
<h2>The BioPad's Applications</h2>
-
    <!-- /.content-section-a -->
+
<p class="lead">With respect to basic sciences, the BioPad demonstrates that protein complementation techniques are suitable for biosensors – especially for two-component regulatory systems. The introduction of the split IFP1.4 (infrared fluorescent protein) into the registry will allow future iGEM and research teams to take advantage of the reversibility and precision of this protein. Moreover, our work on the Cpx pathway will allow future iGEM teams to make novel uses of other members of this subfamily, as well as other two-component regulatory systems.
 +
<!--Moreover, our work on the Cpx pathway will allow future iGEM teams to use other members of the OmpR/PhoB subfamily as well as other two-component regulatory systems in new ways. -->
 +
<!--
 +
<br /><br />
 +
As for applied sciences, the BioPad could be used to deliver a cheap, fast, efficient, and accurate antibiotic screening system allowing researchers to easily quantify the effects of antibiotics on gram-negative bacteria. The BioPad project could also be the source of an "antibiotic complement" drug increasing the efficiency of pre-existing antibiotics. Moreover, the Biopad could provide a new approach to studying genes by allowing researchers to examine the relationship between genes and their corresponding activating signals. To learn more about the applications of our project click <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Applications">here</a>.</p>
 +
- TALK ABOUT SPEED INCREASE, MICROFLUIDICS -->
 +
<!--
 +
<div class="cntr">
 +
<img src="https://static.igem.org/mediawiki/2014/1/1f/3D_IFP_EPFL.png" alt="IFP 3D">
 +
</div>
 +
-->
 +
<!-- OLD TEXT -->
 +
<!-- Most sciences are able to detect and process signals in a fast and efficient way. Biology lacks this ability as signal detection and processing requires large amounts of time leading to potential inaccuracies and interferences from external sources. We aim to improve this and make signal induction faster and more accurate in biological contexts. In this sense, the 2014 EPFL iGEM team worked on developing a -->
 +
<!--As a proof of concept we aim to design touch responsive bacteria designing an innovating new biological machine using protein complementation techniques.</p> -->
 +
<!-- <p class="lead">As a proof of concept of this new way of viewing biology, this year’s EPFL iGEM team aims to build the first biological touchpad, hereafter referred as the BioPad, allowing users to control electronics in real time through living organisms.</p>  -->
 +
</div>
 +
</div>
 +
<!-- END ABSTRACT -->
 +
<div class="container" id="vignettes">
 +
  <div class="row">
 +
<div class="col col-md-6">
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">
 +
  <div class="flip-container">
 +
    <div class="flipper" id="vignette_stress">
 +
      <div class="front">
 +
        <!-- front content -->
 +
        <img src="https://static.igem.org/mediawiki/2014/c/ce/Exp1_MM.png" alt="touch bacteria" height="200" />
 +
        <br /><br />
 +
        <h1>Stress responsive bacteria </h1>
 +
      </div>
 +
      <div class="back">
 +
        <!-- back content -->
 +
  <p class="lead">Find out how we took advantage of the Cpx pathway and split IFP1.4 to give birth to bacteria emitting fast signals in response to chemical and mechanical stresses!</p>
 +
      </div>
 +
    </div>
 +
  </div>
 +
  </a>
 +
  </div>
 +
<div class="col col-md-6">
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">
 +
  <div class="flip-container">
 +
    <div class="flipper" id="vignette_yeast">
 +
      <div class="front">
 +
        <!-- front content -->
 +
        <img src="https://static.igem.org/mediawiki/2014/b/b3/Beer.png" alt="Yeast" />
 +
        <h1>Osmo responsive yeast</h1>
 +
      </div>
 +
      <div class="back">
 +
        <!-- back content -->
 +
  <p class="lead">Discover how we engineered the HOG osmotic response pathway to create touch sensitive yeast strains! Learn more on how we implemented a split GFP and a split Luciferase in <i>S. cerevisiae</i> leading to light emission when pressure is applied.</p>
 +
      </div>
 +
    </div>
 +
  </div>
 +
  </a>
 +
  </div>
 +
</div>
 +
  <div class="row">
 +
<div class="col col-md-6">
-
<div class="content-section-a">
+
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">
 +
  <div class="flip-container">
 +
    <div class="flipper" id="vignette_microfluidics">
 +
      <div class="front">
 +
        <!-- front content -->
 +
        <img src="https://static.igem.org/mediawiki/2014/d/d3/Microfluidics.png" alt="Microfluidics" />
 +
        <h1>Microfluidics</h1>
-
        <div class="container">
+
      </div>
 +
      <div class="back">
 +
        <!-- back content -->
 +
  <p class="lead">Our Biopad is implemented in a microfluidic chip. This tool allows all kinds of analytical experiments
-
            <div class="row">
+
  and is increasingly used in biological research. From fabrication to applications, find out more about
-
                    <hr class="section-heading-spacer">
+
-
                    <div class="clearfix"></div>
+
-
                    <h2 class="section-heading">Engineering: CpxR and split complementation techniques</h2>
+
-
                    <p class="lead">
+
 +
  this awesome device here!</p>
 +
      </div>
 +
    </div>
 +
  </div>
 +
  </a>
 +
  </div>
-
<!-- ENGINEERING CPXR -->
+
  <div class="col col-md-6">
-
 
+
<a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">
-
The main component that we wish to engineer is CpxR. It has been reported that the protein homo-dimerizes upon activation. We thus plan to use fused split proteins of fluorescent and bioluminescent nature to detect its activation. <br /><br />
+
  <div class="flip-container">
-
 
+
    <div class="flipper" id="vignette_hardware">
-
As a preliminary step, we used two fluorescent proteins sfGFP and IFP to characterisation CpxR. Split sfGFP (superfolded GFP) is an irreversible split system which will be used to prove the dimerization of CpxR. Split IFP on the other hand (Infrared Fluorescent Protein) is a reversible split system which will be used to understand the spatio-temporal dimerization of CpxR and thus allow us to better understand the On/Off mechanism of this system.<br /><br />
+
      <div class="front">
-
 
+
        <!-- front content -->
-
To achieve our final goal, we will engineer split bioluminescent proteins: Firefly and Renilla split Luciferases. These constructs will be the main component of our system. When fused to CpxR, we are expecting to witness emission upon touch.  
+
        <img src="https://static.igem.org/mediawiki/2014/b/b4/Motherboard.png" alt="Motherboard"/>
-
 
+
         <h1>Hardware</h1>
-
 
+
-
</p>
+
-
 
+
-
         </div>
+
-
        <!-- /.container -->
+
 +
      </div>
 +
      <div class="back">
 +
        <!-- back content -->
 +
  <p class="lead">In order to process our data quickly and automatically, we built an interface with a Raspberry Pi and a camera. Discover how <br />it works by clicking here!</p>
 +
      </div>
     </div>
     </div>
-
    <!-- /.content-section-a -->
+
  </div>
 +
  </a>
 +
  </div>
 +
</div>
 +
  <div class="row">
 +
<div class="col col-md-6">
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">
 +
  <div class="flip-container">
 +
    <div class="flipper" id="vignette_humanpractice">
 +
      <div class="front">
 +
        <!-- front content -->
 +
      <img src="https://static.igem.org/mediawiki/2014/1/15/Human_pract_blanc.png" alt="Human practice" />
 +
        <h1>Human practice</h1>
-
 
+
      </div>
-
 
+
      <div class="back">
-
 
+
        <!-- back content -->
-
 
+
  <p class="lead">Our project is well suited to show the general public the power of synthetic biology. Find out how we introduced this domain to the younger generation, and how they developed their own mini iGEM projects to tackle everyday problems with enthusiasm and creativity.</p>
-
 
+
      </div>
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
<div class="content-section-a">
+
-
 
+
-
        <div class="container">
+
-
 
+
-
            <div class="row">
+
-
                    <hr class="section-heading-spacer">
+
-
                    <div class="clearfix"></div>
+
-
                    <h2 class="section-heading">Engineering: Microfluidic chip interface</h2>
+
-
                    <p class="lead">
+
-
 
+
-
 
+
-
<!-- ENGINEERING MICROFLUIDICS -->
+
-
 
+
-
Our specially designed microfluidic chip, hereafter known as BioPad Chip, will allow easy and accurate induction of fluorescent or bioluminescent signals. The chip is made up of thousands of compartments – representing the pixels of our device ­ of the height of a bacteria. The BioTouch Chip thus allows the effective trapping and induction of stress onto our engineered bacteria. <br /><br />
+
-
 
+
-
 
+
-
</p>
+
-
 
+
-
        </div>
+
-
        <!-- /.container -->
+
-
 
+
     </div>
     </div>
-
    <!-- /.content-section-a -->
+
  </div>
 +
  </a>
 +
  </div>
 +
  <div class="col col-md-6">
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">
 +
  <div class="flip-container">
 +
    <div class="flipper" id="vignette_biosafety">
 +
      <div class="front">
 +
        <!-- front content -->
 +
        <img src="https://static.igem.org/mediawiki/2014/b/b3/Safety_box.png" alt="Safety"/>
 +
        <h1>Bio Safety</h1>
-
 
+
      </div>
-
 
+
      <div class="back">
-
 
+
        <!-- back content -->
-
 
+
<p class="lead">The first microfluidic design that provides<br /> total on-chip waste decontamination: discover<br /> how we tackled biosafety issues by<br /> engineering an awesome device!</p>
-
 
+
    </div>
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
<div class="content-section-a">
+
-
 
+
-
        <div class="container">
+
-
 
+
-
            <div class="row">
+
-
                    <hr class="section-heading-spacer">
+
-
                    <div class="clearfix"></div>
+
-
                    <h2 class="section-heading">Engineering: The BioPad Detector</h2>
+
-
                    <p class="lead">
+
-
 
+
-
 
+
-
<!-- ENGINEERING DETECTOR -->
+
-
 
+
-
The signals induced by the BioTouch Chip are then processed by our self designed detection system: the BioTouch Detector. The BioTouch Detector is mainly made of a cheap computer (Raspberry Pi), a highly sensitive digital camera with appropriate light filters, and a light emitting source. The BioTouch Detector locates signals from various sources (infrared fluorescence, green fluorescence and luminescence), processes them and sends back the relative positions of the signals with respect to the BioTouch Pad. Thanks to this position, we are able to tell extract information such as giving a computer  operating system that the position represents the position of the mouse on a screen, that the well at the given position is a suitable antibiotic candidate, or that a gene of interest has been activated. We therefore effectively control a computer or any other electronic device through a living interface: the BioTouch Pad.
+
-
 
+
-
 
+
-
</p>
+
-
 
+
-
        </div>
+
-
        <!-- /.container -->
+
-
 
+
     </div>
     </div>
-
    <!-- /.content-section-a -->
+
  </div>
 +
  </a>
 +
  </div>
 +
</div>
 +
</div>
Line 340: Line 358:
 +
<!-- THE TEAM -->
 +
<div id="meetourteam">
 +
<div class="span6"><h1 class="cntr">MEET OUR TEAM</h1>
 +
<p>We are a group of 13 students from the faculties of Life Sciences & Technologies and Computer Sciences, </br>and are supervised by 2 EPFL professors, 1 Lecturer and 5 PhD students.</p></div>
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Team"><img src="https://static.igem.org/mediawiki/2014/2/2c/Team_pic_sitting.jpg" alt="the team's students" class="img-left img-border"></a>
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
<!-- END OF TED ADDITION -->
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
 
-
    <footer>
 
-
        <div class="container">
 
-
            <div class="row">
 
-
<div class="col-lg-12">
 
-
<ul class="list-inline">
 
-
<li><a href="http://www.epfl.ch/" target="_blank"><img src="https://static.igem.org/mediawiki/2014/thumb/0/02/EPFL_logo.png/800px-EPFL_logo.png" height="100"></a></li>
 
-
<li><a href="http://www.novartis.ch/" target="_blank"><img src="https://static.igem.org/mediawiki/2014/7/7f/Novartis.png" height="100"></a></li>
 
-
<li><a href="http://www.roche.com/index.htm" target="_blank"><img src="https://static.igem.org/mediawiki/2014/1/13/Roche.png" height="100"></a></li>
 
-
<li><a href="http://www.nikon.ch/" target="_blank"><img src="https://static.igem.org/mediawiki/2014/f/f7/Nikon.png" height="100"></a></li>
 
-
<li><a href="http://www.sbg-marcom.ch/" target="_blank"><img src="https://static.igem.org/mediawiki/2014/d/d0/SBG.gif"></a></li>
 
-
<li><a href="http://www.microsynth.ch/" target="_blank"><img src="https://static.igem.org/mediawiki/2014/6/68/Microsynth_logo_20kpix.png"></a></li>
 
-
<li><a href="http://www.snapgene.com/" target="_blank"><img src="https://static.igem.org/mediawiki/2014/3/35/SnapGene_Logo_20kpix.png"></a></li>
 
-
</ul>
 
</div>
</div>
-
                <div class="col-lg-12">
+
<!-- END TEAM -->
-
                    <ul class="list-inline">
+
<script type="text/javascript">
-
                        <li><a href="#home">Home</a>
+
    $(document).ready(function() { 
-
                        </li>
+
    $('.carousel').carousel({
-
                        <li class="footer-menu-divider">&sdot;</li>
+
      interval: 4000,
-
                        <li><a href="#about">About</a>
+
      pause: "hover",
-
                        </li>
+
      wrap: true
-
                        <li class="footer-menu-divider">&sdot;</li>
+
    });
-
                        <li><a href="#contact">Contact</a>
+
    });
-
                        </li>
+
</script>
-
                    </ul>
+
-
                    <p class="copyright text-muted small">Copyright &copy; iGEM EPFL 2014. All Rights Reserved</p>
+
-
                </div>
+
-
            </div>
+
-
        </div>
+
-
    </footer>
+
-
 
+
</html>
</html>
 +
{{CSS/EPFL_bottom}}

Latest revision as of 03:50, 18 October 2014

Our project in a nutshell




EPFL_interaction_IFP_cartoon
Association of split IFP 1.4 fragments

The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining protein complementation techniques with biosensors to achieve fast spatiotemporal analysis of cell responses to stimuli. In other words, we fused complementary reporter protein fragments to interacting proteins. The presence of a given stimulus leads to the interaction of the proteins of interest thus allowing the fused split complements to re-acquire their functional conformation and emit signal. We thereby are able to detect signal dynamics by relying on much faster post-transcriptional modifications rather than slow traditional reporter transcription.

As a proof-of-concept, we aimed to develop the first BioPad: a biological trackpad made of a microfluidic chip, touch-responsive organisms and a signal detector. To make our organisms touch-sensitive, we engineering two stress-related pathways in E. coli and S. cerevisiae. As for the reporter proteins, we worked mainly with fluorescent proteins but also implemented a split luciferase complementation assay. To learn more about the various components of our project, check out our overview section, as well as the different parts submitted by our team. If you are a judge, you might also be interested in our results page, our data page and our judging form.

MEET OUR TEAM

We are a group of 13 students from the faculties of Life Sciences & Technologies and Computer Sciences,
and are supervised by 2 EPFL professors, 1 Lecturer and 5 PhD students.

the team's students

Sponsors