Team:EPF Lausanne

From 2014.igem.org

(Difference between revisions)
 
(72 intermediate revisions not shown)
Line 18: Line 18:
         <span class="icon-bar"></span>
         <span class="icon-bar"></span>
       </button>
       </button>
-
       <a class="navbar-brand" href="https://2014.igem.org/Team:EPF_Lausanne"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
+
       <a class="navbar-brand" href="https://igem.org/Main_Page" target="_blank"><img src="https://static.igem.org/mediawiki/2014/d/dc/LogoEPFL.png" alt="" /></a>
</a>
</a>
     </div>
     </div>
Line 55: Line 55:
         <li class="dropdown">
         <li class="dropdown">
-
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practice <span class="caret"></span></a>
+
           <a href="#" class="dropdown-toggle" data-toggle="dropdown">Policy &amp; Practices <span class="caret"></span></a>
           <ul class="dropdown-menu" role="menu">
           <ul class="dropdown-menu" role="menu">
-
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practice</a></li>
+
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">Human Practices</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">Bio Safety</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
             <li><a href="https://2014.igem.org/Team:EPF_Lausanne/PolicyPractice">Metafluidics</a></li>
Line 107: Line 107:
         </div>
         </div>
 +
        <div class="item">
 +
<a href="https://2014.igem.org/Team:EPF_Lausanne/Notebook#35">
 +
        <img src="https://static.igem.org/mediawiki/2014/4/49/Timeline_carroussel.png" alt="" id="slide3">
 +
</a>
 +
        </div>
 +
 +
        <div class="item">
 +
        <img src="https://static.igem.org/mediawiki/2014/d/d4/Giflogo.JPG" alt="" id="slide4">
 +
        </div>
 +
 +
      <div class="item">
 +
<a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">
 +
        <img src="https://static.igem.org/mediawiki/2014/a/ad/Citations_carousel.png" alt="" id="slide5">
 +
</a>
 +
        </div>
 +
     
       </div>
       </div>
       <a class="carousel-control left" href="#carousel" data-slide="prev">&lsaquo;</a>
       <a class="carousel-control left" href="#carousel" data-slide="prev">&lsaquo;</a>
Line 127: Line 143:
<br />
<br />
<br />
<br />
-
<!--<h2>Summary of our project</h2>-->
 
<div class="pull-left">
<div class="pull-left">
Line 136: Line 151:
<br />
<br />
-
<img src="https://static.igem.org/mediawiki/2014/0/0f/Interaction_test_11_cyan_white_bg_bigger.gif" alt="EPFL_interaction_IFP_cartoon" height="330" style="margin-right: 30px" />  
+
<div class="img-left pull-left cntr"><img src="https://static.igem.org/mediawiki/2014/0/0f/Interaction_test_11_cyan_white_bg_bigger.gif" alt="EPFL_interaction_IFP_cartoon" class="img-border" style="margin-top: 0px;" height="330" /><br />
 +
<figcaption class="cntr">Association of split IFP 1.4 fragments</figcaption></div>
</div>
</div>
-
<p class="lead">
+
<p class="lead text-justify">
-
The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining protein complementation techniques with biosensors to achieve fast spatiotemporal analysis of cell responses to stimuli. To restate this in an easier way, we fused complementary reporter protein fragments to interacting proteins. Upon stimulus, the interacting proteins of interest associate and enable the split complements of the reporter to emit signal. We thereby are able to detect signal dynamics by relying on much faster post-transcriptional modifications rather than slow traditional reporter transcription.  
+
The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining protein complementation techniques with biosensors to achieve fast spatiotemporal analysis of cell responses to stimuli. In other words, we fused complementary reporter protein fragments to interacting proteins. The presence of a given stimulus leads to the interaction of the proteins of interest thus allowing the fused split complements to re-acquire their functional conformation and emit signal. We thereby are able to detect signal dynamics by relying on much faster post-transcriptional modifications rather than slow traditional reporter transcription.
<!--
<!--
we are able to detect signal dynamics thanks to the association of the reporter fragments. We thereby rely on much faster post-transcriptional modifications to generate signals rather than traditional reporter transcription.  
we are able to detect signal dynamics thanks to the association of the reporter fragments. We thereby rely on much faster post-transcriptional modifications to generate signals rather than traditional reporter transcription.  
-->
-->
-
 
+
<!--
The principle is the following: two complementary fragments of a reporter protein are fused to interacting proteins. When the interaction is stimulated, the two fragments associate, thereby reconstituting the reporter signal in a much faster way than traditional post-transcriptional reporters.  
The principle is the following: two complementary fragments of a reporter protein are fused to interacting proteins. When the interaction is stimulated, the two fragments associate, thereby reconstituting the reporter signal in a much faster way than traditional post-transcriptional reporters.  
 +
-->
<br /><br />
<br /><br />
-
As a proof-of-concept, we aimed to develop the first BioPad: a biological trackpad made of a microfluidic chip, touch-responsive organisms and a signal detector. To make our organisms touch-sensitive, we engineering two stress-related pathways in <i>E. coli</i> and <i>S. cerevisiae</i>. In <i>E. coli</i>, we engineered the Cpx Pathway - a two-component regulatory system responsive to envelope stress. In <i>S. cerevisiae</i>, we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress. To learn more about the various components of our project, check out our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Overview">overview section</a>. If you are a judge, you might also be interested in our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Results">result page</a>, our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Data">data page</a> and our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Judging">judging form</a>.</p>
+
As a proof-of-concept, we aimed to develop the first BioPad: a biological trackpad made of a microfluidic chip, touch-responsive organisms and a signal detector. To make our organisms touch-sensitive, we engineering two stress-related pathways in <i>E. coli</i> and <i>S. cerevisiae</i>.<!--In <i>E. coli</i>, we engineered the Cpx Pathway - a two-component regulatory system responsive to envelope stress. In <i>S. cerevisiae</i>, we modified the HOG Pathway - a MAPKK pathway responsive to osmotic stress.--> As for the reporter proteins, we worked mainly with fluorescent proteins but also implemented a split luciferase complementation assay. To learn more about the various components of our project, check out our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Overview">overview section</a>, as well as the different <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Parts">parts</a> submitted by our team. If you are a judge, you might also be interested in our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Results">results page</a>, our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Data">data page</a> and our <a target="_blank" href="https://2014.igem.org/Team:EPF_Lausanne/Judging">judging form</a>. </p>
<!--
<!--
Line 202: Line 219:
<!-- END ABSTRACT -->
<!-- END ABSTRACT -->
-
<div class="container">
+
<div class="container" id="vignettes">
   <div class="row">
   <div class="row">
Line 208: Line 225:
<a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">
<a href="https://2014.igem.org/Team:EPF_Lausanne/Envelope_stress_responsive_bacteria">
   <div class="flip-container">
   <div class="flip-container">
-
     <div class="flipper">
+
     <div class="flipper" id="vignette_stress">
       <div class="front">
       <div class="front">
         <!-- front content -->
         <!-- front content -->
Line 218: Line 235:
       <div class="back">
       <div class="back">
         <!-- back content -->
         <!-- back content -->
-
   <p class="lead">Can't touch this</p>
+
   <p class="lead">Find out how we took advantage of the Cpx pathway and split IFP1.4 to give birth to bacteria emitting fast signals in response to chemical and mechanical stresses!</p>
       </div>
       </div>
     </div>
     </div>
   </div>
   </div>
 +
  </a>
   </div>
   </div>
Line 228: Line 246:
<a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">
<a href="https://2014.igem.org/Team:EPF_Lausanne/Yeast">
   <div class="flip-container">
   <div class="flip-container">
-
     <div class="flipper">
+
     <div class="flipper" id="vignette_yeast">
       <div class="front">
       <div class="front">
         <!-- front content -->
         <!-- front content -->
-
         <img src="https://static.igem.org/mediawiki/2014/b/b3/Beer.png" alt="Yeast" height="200" />
+
         <img src="https://static.igem.org/mediawiki/2014/b/b3/Beer.png" alt="Yeast" />
         <h1>Osmo responsive yeast</h1>
         <h1>Osmo responsive yeast</h1>
Line 237: Line 255:
       <div class="back">
       <div class="back">
         <!-- back content -->
         <!-- back content -->
-
   <p class="lead">Discover how we took advantage of the HOG osmotic response pathway to create touch sensitive yeast strains! Learn more on how we implemented a split GFP and a split Luciferase in <i>S. cerevisiae</i> leading to light emission when pressure is applied.</p>
+
   <p class="lead">Discover how we engineered the HOG osmotic response pathway to create touch sensitive yeast strains! Learn more on how we implemented a split GFP and a split Luciferase in <i>S. cerevisiae</i> leading to light emission when pressure is applied.</p>
       </div>
       </div>
     </div>
     </div>
   </div>
   </div>
 +
  </a>
   </div>
   </div>
-
</a>
 
</div>
</div>
Line 252: Line 270:
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">
<a href="https://2014.igem.org/Team:EPF_Lausanne/Microfluidics">
   <div class="flip-container">
   <div class="flip-container">
-
     <div class="flipper">
+
     <div class="flipper" id="vignette_microfluidics">
       <div class="front">
       <div class="front">
         <!-- front content -->
         <!-- front content -->
Line 269: Line 287:
     </div>
     </div>
   </div>
   </div>
 +
  </a>
   </div>
   </div>
Line 274: Line 293:
<a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">
<a href="https://2014.igem.org/Team:EPF_Lausanne/Hardware">
   <div class="flip-container">
   <div class="flip-container">
-
     <div class="flipper">
+
     <div class="flipper" id="vignette_hardware">
       <div class="front">
       <div class="front">
         <!-- front content -->
         <!-- front content -->
-
         <img src="https://static.igem.org/mediawiki/2014/b/b4/Motherboard.png" alt="Motherboard" height="250"/>
+
         <img src="https://static.igem.org/mediawiki/2014/b/b4/Motherboard.png" alt="Motherboard"/>
-
         <h1>I.T</h1>
+
         <h1>Hardware</h1>
       </div>
       </div>
       <div class="back">
       <div class="back">
         <!-- back content -->
         <!-- back content -->
-
   <p class="lead">I like turtles.</p>
+
   <p class="lead">In order to process our data quickly and automatically, we built an interface with a Raspberry Pi and a camera. Discover how <br />it works by clicking here!</p>
       </div>
       </div>
     </div>
     </div>
   </div>
   </div>
 +
  </a>
   </div>
   </div>
</div>
</div>
Line 295: Line 315:
<a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">
<a href="https://2014.igem.org/Team:EPF_Lausanne/HumanPractice">
   <div class="flip-container">
   <div class="flip-container">
-
     <div class="flipper">
+
     <div class="flipper" id="vignette_humanpractice">
       <div class="front">
       <div class="front">
         <!-- front content -->
         <!-- front content -->
-
       <img src="https://static.igem.org/mediawiki/2014/1/15/Human_pract_blanc.png" alt="Human practice" height="250" />
+
       <img src="https://static.igem.org/mediawiki/2014/1/15/Human_pract_blanc.png" alt="Human practice" />
         <h1>Human practice</h1>
         <h1>Human practice</h1>
Line 304: Line 324:
       <div class="back">
       <div class="back">
         <!-- back content -->
         <!-- back content -->
-
   <p class="lead">Our project is well suited to show the general public the power of synthetic biology. Find out how we introduced this domain to the younger generation, and how they developped their own mini iGEM projects to attack the global and everyday problems with enthusiasm and fantasy.</p>
+
   <p class="lead">Our project is well suited to show the general public the power of synthetic biology. Find out how we introduced this domain to the younger generation, and how they developed their own mini iGEM projects to tackle everyday problems with enthusiasm and creativity.</p>
       </div>
       </div>
     </div>
     </div>
   </div>
   </div>
 +
  </a>
   </div>
   </div>
Line 315: Line 336:
<a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">
<a href="https://2014.igem.org/Team:EPF_Lausanne/Safety">
   <div class="flip-container">
   <div class="flip-container">
-
     <div class="flipper">
+
     <div class="flipper" id="vignette_biosafety">
       <div class="front">
       <div class="front">
         <!-- front content -->
         <!-- front content -->
-
         <img src="https://static.igem.org/mediawiki/2014/b/b3/Safety_box.png" alt="Safety" height="250"/>
+
         <img src="https://static.igem.org/mediawiki/2014/b/b3/Safety_box.png" alt="Safety"/>
-
         <h1>Safety</h1>
+
         <h1>Bio Safety</h1>
       </div>
       </div>
       <div class="back">
       <div class="back">
         <!-- back content -->
         <!-- back content -->
-
  <p class="lead">work in progress</p>
+
<p class="lead">The first microfluidic design that provides<br /> total on-chip waste decontamination: discover<br /> how we tackled biosafety issues by<br /> engineering an awesome device!</p>
-
      </div>
+
    </div>
     </div>
     </div>
   </div>
   </div>
 +
  </a>
   </div>
   </div>
</div>
</div>
Line 342: Line 364:
<p>We are a group of 13 students from the faculties of Life Sciences & Technologies and Computer Sciences, </br>and are supervised by 2 EPFL professors, 1 Lecturer and 5 PhD students.</p></div>
<p>We are a group of 13 students from the faculties of Life Sciences & Technologies and Computer Sciences, </br>and are supervised by 2 EPFL professors, 1 Lecturer and 5 PhD students.</p></div>
-
<a href="https://2014.igem.org/Team:EPF_Lausanne/Team"><img src="https://static.igem.org/mediawiki/2014/2/2c/Team_pic_sitting.jpg" alt="the team's students"></a>
+
<a href="https://2014.igem.org/Team:EPF_Lausanne/Team"><img src="https://static.igem.org/mediawiki/2014/2/2c/Team_pic_sitting.jpg" alt="the team's students" class="img-left img-border"></a>

Latest revision as of 03:50, 18 October 2014

Our project in a nutshell




EPFL_interaction_IFP_cartoon
Association of split IFP 1.4 fragments

The 2014 EPFL iGEM team has been working on showing that biologically engineered organisms can detect and process signals quickly and efficiently. With this in mind, our team brought forward a novel idea: combining protein complementation techniques with biosensors to achieve fast spatiotemporal analysis of cell responses to stimuli. In other words, we fused complementary reporter protein fragments to interacting proteins. The presence of a given stimulus leads to the interaction of the proteins of interest thus allowing the fused split complements to re-acquire their functional conformation and emit signal. We thereby are able to detect signal dynamics by relying on much faster post-transcriptional modifications rather than slow traditional reporter transcription.

As a proof-of-concept, we aimed to develop the first BioPad: a biological trackpad made of a microfluidic chip, touch-responsive organisms and a signal detector. To make our organisms touch-sensitive, we engineering two stress-related pathways in E. coli and S. cerevisiae. As for the reporter proteins, we worked mainly with fluorescent proteins but also implemented a split luciferase complementation assay. To learn more about the various components of our project, check out our overview section, as well as the different parts submitted by our team. If you are a judge, you might also be interested in our results page, our data page and our judging form.

MEET OUR TEAM

We are a group of 13 students from the faculties of Life Sciences & Technologies and Computer Sciences,
and are supervised by 2 EPFL professors, 1 Lecturer and 5 PhD students.

the team's students

Sponsors