Team:British Columbia/Test/HumanPractices

From 2014.igem.org

2014 UBC iGEM

Human Practices





In an effort to identify need for our proposed we decided to examine environmental concerns facing the mining industry to determine weather our platform might be of any use to the industry.

The mining sector is vital to the local economy of British Columbia; however, local concerns have been raised with regards to the ability of the sector to be able to operate without jeopardizing the environment. Political and social tension at the interface of resource based industries and the environment has been growing since the Enbridge Northern Gateway pipeline was proposed in 2006.

Mount Polley

More recently, the Mount Polley Tailings pond dam ruptured on August 4th 2014 sending 8 million cubic meters of tailings material and 17 million cubic meters of water into Polley Lake and Quesnel Lake(6). Initially drinking water advisories were established for Polley Lake, Hazeltine Creek, Quesnel Lake, and the Quesnel River system to the Fraser River(1), further testing showed that the drinking water was safe and the ministry of environment did not expect wildlife to be affected(2). However, Quesnel lake is one of the biggest sockeye nurseries in the province and is vital to the local fishing industry (3). As many as 60 million young sockeye will hatch this spring in Quesnel lake and will depend on feeding in the lake to mature before they begin their migration, since heavy metals might remain in the lake for decades the impact on the Sockeye industry could be lasting (3). Many remain skeptical about the minister of environments claims that fish should not be effected for 2 reasons, first tissue sampling of the fish had not been carried out, and second, many reports from locals stated that salmon being caught appeared sick. (2,3) Such reports prompted several local Chiefs to close down their operations citing risk to human health (3). Distrust ran so deep within locals that many refused to consume tap water despite the drinking water ban being lifted on August 7th 2014(5).

Figure.1.

Ariel images of the Mount Polley effluent spilling into Quesnel Lake.

The social, political, and environmental fallout from the mount Polley mine disaster could have significant implications for the industry and the local economy if environmental concerns are translated into policy that restricts the activity of the mine or increases overhead through heightened monitoring. In the days following the disaster members from political parties with strong environmental platforms such as the NDP and the Green Party made several visits to locals in the surrounding areas to hear their concerns. Furthermore, the clean up for the mount Polley Mine Disaster could cost anywhere between 50 and 500 million dollars (4), so there is economic precedent to prevent these disasters from occurring.

This unfortunate disaster highlights the growing public weariness regarding capability of the mining industry to operate while preserving the environment. In a province where similar fears have been able to dramatically slow the advancement of the Northern Gateway pipeline, these are concerns not to be taken lightly (7). However, such a disaster begs the question who’s to blame, should environmental protection and monitoring fall under the responsibility of the government or the industry. To better understand this we turn towards to legislative framework around the mining industry.

Legislation

Both the provincial government and the federal government regulate environmental impact in the mining industry (8). Though these bodies of legislation are meant to harmonize with each other, the provincial legislation differs from province to province and so each region falls under slightly different rules and guidelines for best practice. That being said, most of the enforcement comes from the federal acts such as the Canadian fisheries act, and the provincial acts geared towards protecting the environment (9). The Provincial mining acts on the other hand appear to serve as a set of guidelines towards best practice but are hardly enforced or policed. For example, the health and safety reclamation code under the B.C mining act includes provisions to protect and rehabilitate exploration and mining sites; though the language calls for the minimization of risk it does not set standards that need to be met, and thus is relatively ineffective (9). Other associations have set guidelines to direct the mining industry towards better practice but appear to do little, for instance the prospectors and developers association of Canada has a set of standards for exploration but these are completely voluntary, often not respected in the field (9).



A closer examination of aspects of the federal environmental acts shows that while they offer stricter guidelines and policing, there are still loopholes that could be taken advantage of. The Metal Mining Effluent Regulations (under the federal Fisheries act) regulates 9 parameters of mine effluents but is restricted to PH and a variety of heavy metals; there appear to be no regulations for the limit or measurement of hydrocarbons or other toxins in effluents(10). The policing of these regulations seems to be lacking as well, in 2010 half of the 20 operating mines in B.C were exceeding effluent requirements and were not punished, several of these mines were having lethal effects on the trout and zooplankton populations (9).



Though there are loopholes and weaknesses in environmental legislation the overall trend since the 1900’s have been a steady increase in environmental legislation on the domestic and international stage (11).



This steady increase in environmental legislation is reflected by the steady increase in capital expenditure as well as ongoing expenditure within the Canadian mining sector over the past 8 years; the capital expenditure suggests growing investment in technology/practices to enable better protection in the future (12). More importantly it appears that the Canadian Mining industry, as well as Electric power generation and Oil and Gas extraction, is showing increased capital and ongoing expenditure on environmental things (12). This suggests that either out of requirement, or desire to be proactive the mining industry is spending more money on greener practices and might be interested in investing in new technologies that help minimize environmental impact.





The Industry

To gain perspective we conducted an interview with Dr. John Thomspon, an expert in the mining space and a member of the genome BC board of directors. In our conversation with Dr. Thomspon we learned that in the mining industry environment is regarded not as competitive but as a common problem for the industry; “anything that can be done better is good for everyone”. Furthermore, the industry is in agreement that the amount of environmental legislature will increase and so will the expenditure to fulfill its requirements. This co-operative attitude and the predicted need to reduce impact suggest the mining industry would look favorably on technology that reduces environmental impact without harming yields.

With regards to tailings ponds Dr. Thomspon informed us that there is very little environmental legislation governing them or instructing industry what to do with them. As a result tailings are often either buried or flooded, they are rarely remediated or re-mined for ore. Furthermore, governments won’t fund remediation unless the ponds are toxic. Given that mining companies spend millions of dollars on containing tailings, it would be beneficial for the industry to wield a technology that would allow them to re-mine tailings, thus reducing environmental impact and generating revenue. This concept is not foreign to the mining industry, in some cases when mineral prices sky rocket mining companies will invest in re-mining tailings ore for that given mineral, this is a practice that dates back to the earliest days of gold mining.

We propose that our platform of biological mineral separation would be attractive to the industry in addressing some of its environmental concerns while generating revenue. Coupled with our directed evolution system a variety of peptides could be used to extract many different minerals and possibly heavy metals. The industry has demonstrated a growing need to deal with environmental issues such as tailings through current image issues (Mount Polley), growing legislative restrictions and increasing environmental expenditures and our platform can offer a solution.

References

1)http://www.env.gov.bc.ca/eemp/incidents/2014/pdf/PSA_HealthAdvisory_MountPolley_20140805.pdf

2) http://www.env.gov.bc.ca/eemp/incidents/2014/pdf/Memo-QuesnelWaterQuality-DW-AL_20140807.pdf

3) http://www.theglobeandmail.com/news/british-columbia/mount-polley-tailings-spill-effects-could-last-for-decades/article20596892/

4) http://www.theglobeandmail.com/news/british-columbia/bc-further-rescinds-water-use-ban-near-mount-polley-mine-spill/article20024690/

5) http://www.desmog.ca/2014/08/12/residents-refuse-drink-water-despite-ban-lift-after-mount-polley-mine-disaster

6) http://www.env.gov.bc.ca/eemp/incidents/2014/mount-polley/#updates

7) http://en.wikipedia.org/wiki/Enbridge_Northern_Gateway_Pipelines

8) http://www.mining.bc.ca/our-focus/environmental-laws-regulations

9) http://www.miningwatch.ca/publications/introduction-legal-framework-mining-canada

10) http://laws.justice.gc.ca/eng/regulations/SOR-2002-222/page-17.html#h-51

11) http://www.eea.europa.eu/soer/europe-and-the-world/megatrends/environmental-regulation-and-governance-increasing

12) http://www5.statcan.gc.ca/olc-cel/olc.action?objId=16F0006X&objType=2&lang=en&limit=0



Historical Copper Price

As indicated in Figure 1, prices of copper has been steadily increasing worldwide. As such, demand from mining companies for greater output has grown. Beyond just exploring new areas to mine, mining companies have to figure out how to maximize the output from their current land by re-extracting from the low grade copper ores.

Figure 1 : Copper price for the past 25 year

Current Global Mining Industry

According to SNL which provides global financial information on metal and mining, statistics (Figure 2) has shown that the global drilling activity in general has been declining gradually in the past 3 years, with the decreases in gold and copper as the most obvious. Such slowdown in drilling activity is due to the lack of investor funding for exploration (Figure 3). In fact in 2013, the amount of investment raised for exploration was lowered to levels not seen for a decade. The decrease in drilling activities can lead to stagnation in the industry’s medium- and long-term supply pipeline. As a result, copper producers will focus mostly on extracting copper from the current copper ores, most of which are contain low level of copper.

Figure 2: Global Drilling Activity

Figure 3: Significant Exploration-related Financings by Junior Companies, 2008-13

Copper Mining in Canada

Canada is the third largest copper producer in the world, after Chile and the USA. Copper mined in Canada is hosted in sulphide sources from volcanic and magnetic activity, and porphyry deposits. Copper is widespread in Canada and British Columbia is the largest copper-producing province, followed by Ontario and Quebec. Highland Valley Copper in British Columbia, owned by Teck Resources Limited, is the largest Copper mine in Canada.

Copper Extraction Vs Current Technological Limit

Due to more complex mineralogy and lower grade copper ores, arsenic content in copper concentrates has been stable since 2004, yet copper contained in concentrates has declined (Figure 4). The As/Cu ratio has increased by 40% since 2000 (Figure 5). Gradual depletion ore with low levels of arsenic is a growing concern within the copper industry [5]; it leads to higher processing and environmental costs as the government has stringent environmental regulations particularly related to arsenic. As a result, this has been a concern for the miners and smelters.

Figure 4: As and Cu Content in Concentrate



Figure 5: As/Cu Ratio in Concentrate



According to the data provided by Teck, the largest mining company in Canada, arsenic content in copper concentrates is expected to double in the next 6-years. Thus, copper concentrates with high level of arsenic (>1% As) could enter the market. One thing to note is that copper concentrates with >1% As cannot be processed by standard smelting technology.

As shown in Figure 6, the arsenic smelting capacity is about 100,000 to 120,000 tonnes, yet with the increase in As content in Cu concentrates, the standard smelting technologies can no longer meet the demand of Cu processing. Technologies processing high Ar/Cu concentrates are available, yet they do not meet best-in-class environmental requirements. Therefore, new technologies and processes are necessary to maintain sustainable copper production from As-bearing Cu concentrates (>1 % As).

Figure 6: As Content in Cu Concentrate and Smelter’s As Capacity

Technologies involving pyro-metallurgical pre-treatment are an option, yet they have certain restrictions and additional costs. Non-traditional methods that involves high pressure, high temperature or chemical agents could also add to the operation cost. Thus, our project aims for an easier solution that is much less energy demanding yet also environmental friendly.


© 2014 UBC iGEM