Team:Waterloo/Translate

From 2014.igem.org

(Difference between revisions)
(Edit 1 - Patricia. Need to add lists)
Line 17: Line 17:
<div class="content">
<div class="content">
   <ul class="tabs">
   <ul class="tabs">
-
     <li><a href="#view0">Instructions Tab</a></li>
+
     <li><a href="#view0">Project Inspiration</a></li>
-
     <li><a href="#view1">Tab 1</a></li>
+
     <li><a href="#view1">Market Analysis</a></li>
-
     <li><a href="#view2">Tab 2</a></li>
+
     <li><a href="#view2">Ethics</a></li>
-
     <li><a href="#view3">Tab 3</a></li>
+
     <li><a href="#view3">Scalability</a></li>
 +
    <li><a href="#view4">Project Interests</a></li>
   </ul>
   </ul>
   <div class="tabcontents">
   <div class="tabcontents">
     <div class="anchor" id="view0">
     <div class="anchor" id="view0">
-
       <h2>Instructions for Tabs</h2>
+
       <h2>Project Inspirations</h2>
-
       In the file, use the 'find' function to search for "Content below images." Below this line, the code for the different tabs begin.
+
       Based on the design of Staphylocide, we developed an assembly of practices that attempts to implement a therapeutic microbe into a topical medication. We considered the marketability, production, and scalability of such a medication. Dr. Marianna Foldvari, a professor whose research focuses on the development of intelligent drug delivery systems, guided our understanding of current practices in medicine and pharmaceuticals. We also analyzed the safety, quality control, and ethical issues that are presented. Preventing contamination and maintenance of the viability of S. epidermidis in a large bioreactor are examples of issues that need to be considered when scaling up. A list of excipients for the drug, a method for the scaled production of freeze-dried cells, and a protocol for administration of the drug are suggested. These practices are essential to the healthcare infrastructure in terms of Staphylocide’s real-world application.
-
      Between the 'ul' tags, there is a list with the tab names. Change the tabs to list them in order. Under the '/ul' tag and within the 'tabcontents' div, include other divs with the ids in the list of tabs. Between these divs, add the information that you would like displayed when the corresponding tab is selected.
+
-
 
+
-
      Note: The epidemiology map is shown in 'Tab 1'
+
     </div>
     </div>
     <div class="anchor" id="view1">
     <div class="anchor" id="view1">
-
       <h2>Tab 1</h2>
+
       <h2>Market Analysis</h2>
       <p>
       <p>
-
         content 1 <br>
+
         If a CRISPR-RNAi-based drug designed to treat MRSA infections were to enter the marketplace, there would be few competing technologies that could offer alternative solutions to the same problem. While new antibiotics such as NAI-107 (NBI, 2013) are being developed for MRSA infection treatment, the number of antimicrobial agents approved for human use by the FDA has dwindled down to only seven from the years 2003-2012 (IDSA, 2011). The European Centre for Disease is challenging world governments to develop ten novel antibiotics by 2020 (Edward-Jones, 2013).
-
        content 1 <br>
+
 
-
        <iframe src="http://mapsengine.google.com/map/embed?mid=ztrZ1qkPPbZo.kq_MwB1YDonc" width="640" height="480"></iframe>
+
Although discovering new antibiotics is not an impossible task, much of the ‘low-hanging fruit’ has already been commercialized (Davies, 2006). Pharmaceutical companies must spend more time and resources for discovery. Currently, only the five largest pharmaceutical firms have antibiotic discovery divisions (Davies, 2006).  Constraints on revenue, expenses, and time have slowed the discovery of novel antibiotics.
-
        content 1 <br>
+
 
-
        content 1 <br>
+
Antimicrobial agents are usually only prescribed for a short period of time, and are no longer required once the infection has been addressed.  This limited duration allows only a few doses from which pharmaceutical firms can recuperate costs.  Alternatively, these companies are entering research in developing “quality of life” drugs that treat chronic illnesses, and require prolonged administration (Davies, 2006).
-
        content 1 <br>
+
 
-
        content 1 <br>
+
Given that many of the easily-discovered antibiotics are already commercialized, the time and research required to discover novel antibiotics that can be proven to be safe for human use drives up pharmaceutical research costs. This venture is hence less worthwhile now than when it was first established (Davies, 2006). On the contrary, bacteriophage therapies of MRSA infections are growing in popularity, have the advantage of being able to treat internal infections, and are estimated to be less expensive to administer than antibiotic treatments (Abedon et al., 2011).
-
        content 1 <br>
+
-
        content 1 <br>
+
-
        content 1 <br>
+
-
        content 1 <br>
+
       </p>
       </p>
     </div>
     </div>
     <div class="anchor" id="view2">
     <div class="anchor" id="view2">
-
       <h2>Tab 2</h2>
+
       <h2>Ethics</h2>
       <p>
       <p>
         content 2 <br>
         content 2 <br>
Line 96: Line 90:
     </div>
     </div>
     <div class="anchor" id="view3">
     <div class="anchor" id="view3">
-
       <h2>Tab 3</h2>
+
       <h2>Scalability</h2>
 +
      <p>
 +
We assessed management of the project’s transition from the laboratory work into society’s functional use.
 +
 
 +
<h3>Our proposal for scaling up the project is as follows:</h3>
 +
<h4>Process highlights for the scaled production of donor cells</h4>
 +
(Lian, 2012)
 +
Establish dedicated manufacturing equipment and facilities.
 +
Choose a strain for the “master seed lot” to preserve desired characteristics.
 +
Maintain a succession of cultures so that live bacteria will be available for each new batch, transferring cells to a new culture at predetermined intervals.
 +
<p>Inoculate vessels containing a nutrient medium. At regular intervals, evaluate the condition of cultures for preservation of desired characteristics, growth, and sterility.  Growth is monitored through comparisons to the ideal optical density and, if applicable, the pH of the growth medium.  Meanwhile, sterility requires the collection and subculture of a sample. Then, examined with an approved identity test using microbiological techniques and/or molecular biology techniques, S. epidermidis should be the only microbe present in the cultures.
 +
<p>Follow the freeze-drying procedure appropriate for S. epidermidis.  Evaluate the condition of cultures for growth and sterility in the same manner outlined in step 5, with the addition of weighing the freeze-dried pellet.
 +
Package the dormant therapeutic donor cells according to the standards to ensure viability when it reaches the point of care.
 +
Test the batch quality under the same criteria above. This may also include animal testing.
 +
 
 +
<h4>Scheme for Point of Care</h4>
 +
·        Package the base (vehicle) and donor cells separately (as a multi/single dose). (Lian, 2012)
 +
·        Screen for adverse complications (i.e. immunodeficiency) and confirm MRSA infection. (Sanofi Pasteur Limited, 2002)(Public Health Agency of Canada, 2012)
 +
·        Train administrators to handle and discard materials according to Biosafety Level 1 practices. (ATCC, 2014)
 +
·        Instructions: Reconstitute bacteria and incubate.  Inoculate base (vehicle).  Apply Staphylocide in appropriate dose(s) for an optimized period of time as determined by plasmid conjugation, and apply the β-lactam antibiotics. 
 +
·        Store at (2°C to 8°C) until expiration. (Sanofi Pasteur Limited, 2002)(Public Health Agency of Canada, 2012)(ATCC, 2014)
 +
·      Short life-span for drug after reconstitution. (Sanofi Pasteur Limited, 2002)
 +
 
 +
<h4>Pharmaceutical design</h4>
 +
·        Use freeze-dried Staphylocide (therapeutic microbe). (Lian, 2012)
 +
·        Include minimum nutrients for S. epidermidis. (M. Foldvari, personal communication, August 1, 2014)
 +
·        Prepare an ointment-type for the base, in accordance to the practice of matching the lesions with preparation characteristics. (M. Foldvari, personal communication, August 1, 2014)
 +
·        Prohibit the use of preservatives and packaging.(Lian, 2012)
 +
·        Compare the toxicity profile of other excipients to S. epidermidis. (M. Foldvari, personal communication, August 1, 2014)
 +
 
 +
<h3>Product Analysis</h3>
 +
 +
<h4>Introduction</h4>
 +
 +
At this time, the increase in cases of MRSA and CA-MRSA infections requires a novel product for treatment without relying solely on developing new antibiotics. Interest in research for novel antibiotics has only recently increased, but the treatment of MRSA and CA-MRSA infections still relies on the use of antibiotics (Liu et al 2011). Our hope is that if our product were to be commercialized and approved for sale, it would be sufficient to treat MRSA and CA-MRSA infections when used in conjunction with conventional antibiotics. Our product, Staphylocide, can be analyzed from the production, transport, patient and application aspects.
 +
 +
<h4>Production</h4>
 +
Since Staphylocide contains live Staphylococcus epidermidis cells, the transport of our product to health care facilities and preparation must be considered. From our research, the ideal form for our product is an ointment that contains our engineered S. epidermidis with the CRISPRi system. Using a topical medium for administration would be the most effective for Staphylocide as a solid surface is required for conjugation and can easily be applied to patient skin where MRSA infections occur.
 +
<p>
 +
It is important to consider the viability of our engineered S.epidermidis cells as production,  transportation, and storage could decrease the number of viable cells, and therefore decrease its effectiveness. A greater viability of our engineered S. epidermidis cells during production and transportation would be highly beneficial. Greater viability would require fewer additions to the product during production, and would also ensure that the concentration of S.epidermidis cells would be sufficient for effective treatment. As a result, the components of Staphylocide must be able to maintain viable cells for as long as possible.
 +
<p>
 +
Another consideration is the continued propagation of the plasmid after rounds of growth in the bioreactor. During production, regular assessment of our engineered S. epidermidis cells must be performed to ensure that the plasmid is maintained. This can be accomplished by adding a gene essential to growth on the plasmid with the non-functional gene found on the bacteria's genome, and setting the bioreactor environmental conditions to require the presence of the gene for organismal survival.  Otherwise, if the plasmid were not essential for survival, the cell line would lose the plasmid in attempt to reduce its metabolic load.
 +
 +
<h4>Product Transport</h4>
 +
We must also consider the shelf-life of Staphylocide after production. It is imperative to use refrigeration during transport and storage. This would prevent excessive growth of the engineered S. epidermidis cells, but still keep them viable. As this product would only be available by prescription, transport will only be from the production site to a health care facility.
 +
 +
 
 +
<h4>Patient Perception Considerations</h4>
 +
Within the application perspective, the product can be further analyzed from the patient and healthcare practitioner perspective as well as for effectiveness. The reception by patients and healthcare practitioners to treatment using our engineered S. epidermidis cells could be an obstacle for widespread adoption and patient compliance. Both parties must be assured that Staphylocide is a safe and effective treatment method.
 +
<p>
 +
Patients may have a strong aversion to treating their MRSA/CA-MRSA infection with engineered S. epidermidis, with the worst case scenario being possible refusal of treatment. This attitude would impede treatment and must be addressed by having health care practitioners educate patients and address questions concerning their treatment. Patients must understand that MRSA infections cannot be treated effectively by many antibiotics and therefore require treatment with Staphylocide.
 +
 +
 
 +
<h4>Application Considerations</h4>
 +
The engineered S. epidermidis cells require a unique treatment protocol that healthcare practitioners must be familiar with. Staphylocide will only be available by prescription for patients who have been infected with MRSA, and treatment will occur at a health care facility and be administered by healthcare practitioners. Proper application of this product at the site of infection is critical for effective treatments.
 +
<p>
 +
At this time, we do not know how effective Staphylocide will be as this information would be obtained through lab testing and clinical trials. Relevant factors from the application of our product that would influence the efficacy include the conjugation efficiency of the CRISPRi system, the quantity of donor cells provided during application, and the subsequent use of antibiotics.
 +
<p>
 +
High conjugation efficiency on the skin surface is critical for a successful treatment. While conjugation efficiency may be optimized in the lab, it would likely be lower in situ. Conjugation efficiency and donor concentration also influence the duration of treatment as time is required for the transfer of the CRISPRi system throughout the MRSA population.
 +
<p>
 +
As a result, health care practitioners must apply Staphylocide liberally over the infected area and allow treatment time. If Staphylocide must be removed, the necessary actions such as cleaning the infection, assessing the infection, and/or replacing the dressings should be performed as soon as possible, before re-applying the ointment on the infection.
 +
<p>
 +
It is important to note that the use of Staphylocide alone will not be able to kill MRSA cells. It must be used on alternating cycles with conventional β-lactam antibiotics to effectively treat the infection. It is therefore crucial for patients to follow their course of antibiotic treatment. For this reason, Staphylocide should be used only at healthcare facilities where health care practitioners are able to oversee the entire treatment.
 +
<p>
 +
Healthcare practitioners should also perform regular microbiological testing of the infection site to monitor the progress of conjugation. When microbial testing indicates that all cells in the area are susceptible to β-lactam antibiotics, a transition from Staphylocide to using antibiotics can be made.
 +
 
 +
 
 +
<h3>Threats challenging the completion of the work</h3>
 +
<h4>Source Review and Methodology</h4>
 +
The recurring challenge encountered in pursuing this work was the novelty of employing donor cells as the active ingredient in a topical medication.  While it is theoretically sound, the extent to which we can claim viability of the schemes is limited by the resources available to anticipate problems in practice.  Therefore, using heavily modified practices from historiography, source analyses were conducted to evaluate the values and limitations of evidence needed to complete the results according to their origin and purpose.  Current pharmaceutical practices and information gathered from Dr. Marianna Foldvari were used to demonstrate this because they are major contributors to several parts of the project. 
 +
 
 +
<h5>Drug delivery system focused researcher</h5>
 +
Dr. Marianna Foldvari provided key input that guided us in our research approach, and in our considerations for topical medication ingredients. Our consultation with her allowed us to develop our product design to a greater depth.  Furthermore, we used the exposure to address components of drug development. For example by adopting Dr. Foldvari’s considerations regarding the shelf-life of a drug, we are better informed in our process of determining the ingredients of our ideal topical medication. Although the expertise needed to integrate our lab design’s machinery with compatible drug components was limited, Dr. Foldvari’s contributions have been significant and valuable to our research.
 +
 
 +
<h5>Proximation through industry standard</h5>
 +
Current pharmacy practices for large-batch manufacture of therapeutic bacteria were referenced from Taiwan Epidemiology Bulletin’s 2012 Seed History and In-process Control for Freeze-dried BCG Vaccine Produced in Taiwan.  Similarly, account for special storage instructions, high expiration sensitivity, as well as other post-production concerns was derived from Package Insert: BCG VACCINE (FREEZE-DRIED) from Sanofi Pasteur Limited.  The BCG (Bacillus Calmette–Guérin) vaccine was chosen as a model for designing the scaled production of Staphylocide donor cells.  Also, using live bacteria as the active therapeutic ingredient, our topical medication should be subject to similar, if not identical standards for controlling medicine quality.  These sources were valuable in our understanding of important details and practices needed, for example, to set parameters for usage and administration. As a limitation, it should be noted that the strictness for these criteria may not be necessary to use in S. epidermidis production, since Staphylocide will be applied topically and not intradermally as in the BCG vaccine.  Parties may be interested in pursuing this limitation to reduce costs accordingly.
 +
 
 +
      </p>
 +
    </div>
 +
    <div class="anchor" id="view4">
 +
      <h2>Project Interests</h2>
       <p>
       <p>
-
         content 3 <br>
+
         content <br>
         content 3 <br>
         content 3 <br>
         content 3 <br>
         content 3 <br>

Revision as of 01:08, 18 October 2014

Translate

Project Inspirations

Based on the design of Staphylocide, we developed an assembly of practices that attempts to implement a therapeutic microbe into a topical medication. We considered the marketability, production, and scalability of such a medication. Dr. Marianna Foldvari, a professor whose research focuses on the development of intelligent drug delivery systems, guided our understanding of current practices in medicine and pharmaceuticals. We also analyzed the safety, quality control, and ethical issues that are presented. Preventing contamination and maintenance of the viability of S. epidermidis in a large bioreactor are examples of issues that need to be considered when scaling up. A list of excipients for the drug, a method for the scaled production of freeze-dried cells, and a protocol for administration of the drug are suggested. These practices are essential to the healthcare infrastructure in terms of Staphylocide’s real-world application.

Market Analysis

If a CRISPR-RNAi-based drug designed to treat MRSA infections were to enter the marketplace, there would be few competing technologies that could offer alternative solutions to the same problem. While new antibiotics such as NAI-107 (NBI, 2013) are being developed for MRSA infection treatment, the number of antimicrobial agents approved for human use by the FDA has dwindled down to only seven from the years 2003-2012 (IDSA, 2011). The European Centre for Disease is challenging world governments to develop ten novel antibiotics by 2020 (Edward-Jones, 2013). Although discovering new antibiotics is not an impossible task, much of the ‘low-hanging fruit’ has already been commercialized (Davies, 2006). Pharmaceutical companies must spend more time and resources for discovery. Currently, only the five largest pharmaceutical firms have antibiotic discovery divisions (Davies, 2006). Constraints on revenue, expenses, and time have slowed the discovery of novel antibiotics. Antimicrobial agents are usually only prescribed for a short period of time, and are no longer required once the infection has been addressed. This limited duration allows only a few doses from which pharmaceutical firms can recuperate costs. Alternatively, these companies are entering research in developing “quality of life” drugs that treat chronic illnesses, and require prolonged administration (Davies, 2006). Given that many of the easily-discovered antibiotics are already commercialized, the time and research required to discover novel antibiotics that can be proven to be safe for human use drives up pharmaceutical research costs. This venture is hence less worthwhile now than when it was first established (Davies, 2006). On the contrary, bacteriophage therapies of MRSA infections are growing in popularity, have the advantage of being able to treat internal infections, and are estimated to be less expensive to administer than antibiotic treatments (Abedon et al., 2011).

Ethics

content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2
content 2

Scalability

We assessed management of the project’s transition from the laboratory work into society’s functional use.

Our proposal for scaling up the project is as follows:

Process highlights for the scaled production of donor cells

(Lian, 2012) Establish dedicated manufacturing equipment and facilities. Choose a strain for the “master seed lot” to preserve desired characteristics. Maintain a succession of cultures so that live bacteria will be available for each new batch, transferring cells to a new culture at predetermined intervals.

Inoculate vessels containing a nutrient medium. At regular intervals, evaluate the condition of cultures for preservation of desired characteristics, growth, and sterility. Growth is monitored through comparisons to the ideal optical density and, if applicable, the pH of the growth medium. Meanwhile, sterility requires the collection and subculture of a sample. Then, examined with an approved identity test using microbiological techniques and/or molecular biology techniques, S. epidermidis should be the only microbe present in the cultures.

Follow the freeze-drying procedure appropriate for S. epidermidis. Evaluate the condition of cultures for growth and sterility in the same manner outlined in step 5, with the addition of weighing the freeze-dried pellet. Package the dormant therapeutic donor cells according to the standards to ensure viability when it reaches the point of care. Test the batch quality under the same criteria above. This may also include animal testing.

Scheme for Point of Care

· Package the base (vehicle) and donor cells separately (as a multi/single dose). (Lian, 2012) · Screen for adverse complications (i.e. immunodeficiency) and confirm MRSA infection. (Sanofi Pasteur Limited, 2002)(Public Health Agency of Canada, 2012) · Train administrators to handle and discard materials according to Biosafety Level 1 practices. (ATCC, 2014) · Instructions: Reconstitute bacteria and incubate. Inoculate base (vehicle). Apply Staphylocide in appropriate dose(s) for an optimized period of time as determined by plasmid conjugation, and apply the β-lactam antibiotics. · Store at (2°C to 8°C) until expiration. (Sanofi Pasteur Limited, 2002)(Public Health Agency of Canada, 2012)(ATCC, 2014) · Short life-span for drug after reconstitution. (Sanofi Pasteur Limited, 2002)

Pharmaceutical design

· Use freeze-dried Staphylocide (therapeutic microbe). (Lian, 2012) · Include minimum nutrients for S. epidermidis. (M. Foldvari, personal communication, August 1, 2014) · Prepare an ointment-type for the base, in accordance to the practice of matching the lesions with preparation characteristics. (M. Foldvari, personal communication, August 1, 2014) · Prohibit the use of preservatives and packaging.(Lian, 2012) · Compare the toxicity profile of other excipients to S. epidermidis. (M. Foldvari, personal communication, August 1, 2014)

Product Analysis

Introduction

At this time, the increase in cases of MRSA and CA-MRSA infections requires a novel product for treatment without relying solely on developing new antibiotics. Interest in research for novel antibiotics has only recently increased, but the treatment of MRSA and CA-MRSA infections still relies on the use of antibiotics (Liu et al 2011). Our hope is that if our product were to be commercialized and approved for sale, it would be sufficient to treat MRSA and CA-MRSA infections when used in conjunction with conventional antibiotics. Our product, Staphylocide, can be analyzed from the production, transport, patient and application aspects.

Production

Since Staphylocide contains live Staphylococcus epidermidis cells, the transport of our product to health care facilities and preparation must be considered. From our research, the ideal form for our product is an ointment that contains our engineered S. epidermidis with the CRISPRi system. Using a topical medium for administration would be the most effective for Staphylocide as a solid surface is required for conjugation and can easily be applied to patient skin where MRSA infections occur.

It is important to consider the viability of our engineered S.epidermidis cells as production, transportation, and storage could decrease the number of viable cells, and therefore decrease its effectiveness. A greater viability of our engineered S. epidermidis cells during production and transportation would be highly beneficial. Greater viability would require fewer additions to the product during production, and would also ensure that the concentration of S.epidermidis cells would be sufficient for effective treatment. As a result, the components of Staphylocide must be able to maintain viable cells for as long as possible.

Another consideration is the continued propagation of the plasmid after rounds of growth in the bioreactor. During production, regular assessment of our engineered S. epidermidis cells must be performed to ensure that the plasmid is maintained. This can be accomplished by adding a gene essential to growth on the plasmid with the non-functional gene found on the bacteria's genome, and setting the bioreactor environmental conditions to require the presence of the gene for organismal survival. Otherwise, if the plasmid were not essential for survival, the cell line would lose the plasmid in attempt to reduce its metabolic load.

Product Transport

We must also consider the shelf-life of Staphylocide after production. It is imperative to use refrigeration during transport and storage. This would prevent excessive growth of the engineered S. epidermidis cells, but still keep them viable. As this product would only be available by prescription, transport will only be from the production site to a health care facility.

Patient Perception Considerations

Within the application perspective, the product can be further analyzed from the patient and healthcare practitioner perspective as well as for effectiveness. The reception by patients and healthcare practitioners to treatment using our engineered S. epidermidis cells could be an obstacle for widespread adoption and patient compliance. Both parties must be assured that Staphylocide is a safe and effective treatment method.

Patients may have a strong aversion to treating their MRSA/CA-MRSA infection with engineered S. epidermidis, with the worst case scenario being possible refusal of treatment. This attitude would impede treatment and must be addressed by having health care practitioners educate patients and address questions concerning their treatment. Patients must understand that MRSA infections cannot be treated effectively by many antibiotics and therefore require treatment with Staphylocide.

Application Considerations

The engineered S. epidermidis cells require a unique treatment protocol that healthcare practitioners must be familiar with. Staphylocide will only be available by prescription for patients who have been infected with MRSA, and treatment will occur at a health care facility and be administered by healthcare practitioners. Proper application of this product at the site of infection is critical for effective treatments.

At this time, we do not know how effective Staphylocide will be as this information would be obtained through lab testing and clinical trials. Relevant factors from the application of our product that would influence the efficacy include the conjugation efficiency of the CRISPRi system, the quantity of donor cells provided during application, and the subsequent use of antibiotics.

High conjugation efficiency on the skin surface is critical for a successful treatment. While conjugation efficiency may be optimized in the lab, it would likely be lower in situ. Conjugation efficiency and donor concentration also influence the duration of treatment as time is required for the transfer of the CRISPRi system throughout the MRSA population.

As a result, health care practitioners must apply Staphylocide liberally over the infected area and allow treatment time. If Staphylocide must be removed, the necessary actions such as cleaning the infection, assessing the infection, and/or replacing the dressings should be performed as soon as possible, before re-applying the ointment on the infection.

It is important to note that the use of Staphylocide alone will not be able to kill MRSA cells. It must be used on alternating cycles with conventional β-lactam antibiotics to effectively treat the infection. It is therefore crucial for patients to follow their course of antibiotic treatment. For this reason, Staphylocide should be used only at healthcare facilities where health care practitioners are able to oversee the entire treatment.

Healthcare practitioners should also perform regular microbiological testing of the infection site to monitor the progress of conjugation. When microbial testing indicates that all cells in the area are susceptible to β-lactam antibiotics, a transition from Staphylocide to using antibiotics can be made.

Threats challenging the completion of the work

Source Review and Methodology

The recurring challenge encountered in pursuing this work was the novelty of employing donor cells as the active ingredient in a topical medication. While it is theoretically sound, the extent to which we can claim viability of the schemes is limited by the resources available to anticipate problems in practice. Therefore, using heavily modified practices from historiography, source analyses were conducted to evaluate the values and limitations of evidence needed to complete the results according to their origin and purpose. Current pharmaceutical practices and information gathered from Dr. Marianna Foldvari were used to demonstrate this because they are major contributors to several parts of the project.
Drug delivery system focused researcher
Dr. Marianna Foldvari provided key input that guided us in our research approach, and in our considerations for topical medication ingredients. Our consultation with her allowed us to develop our product design to a greater depth. Furthermore, we used the exposure to address components of drug development. For example by adopting Dr. Foldvari’s considerations regarding the shelf-life of a drug, we are better informed in our process of determining the ingredients of our ideal topical medication. Although the expertise needed to integrate our lab design’s machinery with compatible drug components was limited, Dr. Foldvari’s contributions have been significant and valuable to our research.
Proximation through industry standard
Current pharmacy practices for large-batch manufacture of therapeutic bacteria were referenced from Taiwan Epidemiology Bulletin’s 2012 Seed History and In-process Control for Freeze-dried BCG Vaccine Produced in Taiwan. Similarly, account for special storage instructions, high expiration sensitivity, as well as other post-production concerns was derived from Package Insert: BCG VACCINE (FREEZE-DRIED) from Sanofi Pasteur Limited. The BCG (Bacillus Calmette–Guérin) vaccine was chosen as a model for designing the scaled production of Staphylocide donor cells. Also, using live bacteria as the active therapeutic ingredient, our topical medication should be subject to similar, if not identical standards for controlling medicine quality. These sources were valuable in our understanding of important details and practices needed, for example, to set parameters for usage and administration. As a limitation, it should be noted that the strictness for these criteria may not be necessary to use in S. epidermidis production, since Staphylocide will be applied topically and not intradermally as in the BCG vaccine. Parties may be interested in pursuing this limitation to reduce costs accordingly.

Project Interests

content
content 3
content 3
content 3
content 3
content 3
content 3
content 3
content 3
content 3
content 3
content 3