Team:UFMG Brazil/Project/Modelling

From 2014.igem.org

(Difference between revisions)
 
(3 intermediate revisions not shown)
Line 1: Line 1:
{{UFMG_Brazil/css}}
{{UFMG_Brazil/css}}
-
<html>
+
<html class=" desktop landscape" lang="en">
 +
 
<head>
<head>
-
<style>
 
-
#wrapper_modelling{
 
-
 
-
padding: 2em;
 
-
background: #FFFFFF;
 
-
height: auto;
 
-
width: auto;
 
-
 
-
}
 
-
 
-
.model_content{
 
-
text-align: justified;
 
-
padding: 1em;
 
-
}
 
-
</style>
 
-
 
     <meta http-equiv="content-type" content="text/html; charset=UTF-8">
     <meta http-equiv="content-type" content="text/html; charset=UTF-8">
-
     <title>Home</title>
+
     <title>Home UFMG Team</title>
     <meta charset="utf-8">
     <meta charset="utf-8">
     <meta name="format-detection" content="telephone=no">
     <meta name="format-detection" content="telephone=no">
-
     <link rel="stylesheet" href="https://dl.dropboxusercontent.com/u/80760623/igem2014/css/grid.css">
+
     <link rel="icon" href="images/favicon.ico" type="image/x-icon">
-
     <link rel="stylesheet" href="https://dl.dropboxusercontent.com/u/80760623/igem2014/css/style.css">
+
     <link rel="stylesheet" href="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/grid.css&action=raw&ctype=text/css">
-
     <link rel="stylesheet" href="https://dl.dropboxusercontent.com/u/80760623/igem2014/css/font-awesome.css" >  
+
     <link rel="stylesheet" href="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/style.css&action=raw&ctype=text/css">
-
     <link rel="stylesheet" href="https://dl.dropboxusercontent.com/u/80760623/igem2014/css/owl.carousel.css" >  
+
     <link rel="stylesheet" href="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/font-awesome.css&action=raw&ctype=text/css" >  
-
     <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700" >  
+
     <link rel="stylesheet" href="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/owl.carousel.css&action=raw&ctype=text/css" >
-
     <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Bevan" >  
+
     <link rel="stylesheet" type="text/css" href="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/magnifier.css&action=raw&ctype=text/css">
     <!--[if lt IE 9]>
     <!--[if lt IE 9]>
         <div style=' clear: both; text-align:center; position: relative;'>
         <div style=' clear: both; text-align:center; position: relative;'>
Line 34: Line 19:
             </a>
             </a>
         </div>
         </div>
-
         <script src="https://dl.dropboxusercontent.com/u/80760623/igem2014/js/html5shiv.js"></script>
+
         <script src="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/html5shiv.js&action=raw&ctype=text/javascript"></script>
-
         <link rel="stylesheet" type="text/css" media="screen" href="css/ie.css">
+
         <link rel="stylesheet" type="text/css" media="screen" href="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/ie.css&action=raw&ctype=text/css">
     <![endif]-->
     <![endif]-->
-
   
+
     <script>
-
     <script src="https://dl.dropboxusercontent.com/u/80760623/igem2014/js/jquery.js"></script>
+
      document.getElementById('top-section').style.height = '10px';
-
    <script src="https://dl.dropboxusercontent.com/u/80760623/igem2014/js/jquery-migrate-1.2.1.js"></script>
+
      var left_menu = document.querySelectorAll(".left-menu");
-
    <script src="https://dl.dropboxusercontent.com/u/80760623/igem2014/js/owl.carousel.js"></script>
+
      for (var i = 0, length = left_menu.length; i < length; i++) {
-
<script src="https://dl.dropboxusercontent.com/u/80760623/igem2014/js/script.js"></script>
+
        left_menu[i].style.display = 'none';
-
<script>
+
      }
-
$( document ).ready(function() {
+
      var right_menu = document.querySelectorAll(".right-menu");
-
     $('#igemmenulogo').click(function(){
+
      for (var i = 0, length = right_menu.length; i < length; i++) {
-
        toggleMenu();
+
        right_menu[i].style.display = 'none';
-
    });
+
      }
-
});
+
    </script>
-
function toggleMenu(){
+
    <style>
-
        if($('#top-section').css("height") == "25px"){
+
     .thumbnail {
-
            $('#top-section').css("height", "10px");
+
      position: relative;
-
            $('.left-menu').hide();
+
      overflow: hidden;
-
            $('.right-menu').hide();
+
      text-align: center;
-
        }
+
      padding: 0 0 30px;
-
        else{
+
      border-bottom: 0px;
-
            $('#top-section').css("height", "25px");
+
      margin-bottom: 0px;
-
            $('.left-menu').show();  
+
      -webkit-transition: all 0.3s ease;
-
            $('.right-menu').show();
+
      transition: all 0.3s ease;
-
        }
+
    }
-
}
+
    .thumbnail:after {
-
toggleMenu();
+
      position: absolute;
-
</script>
+
      content: "";
 +
      background: none;
 +
      bottom: 0;
 +
      left: 45%;
 +
      height: 13px;
 +
      width: 25px;
 +
      -webkit-transition: all 0.3s ease;
 +
      transition: all 0.3s ease;
 +
    }
 +
    .thumbnail:hover:after {
 +
      background: none;
 +
    }
 +
    .thumbnail:hover {
 +
      border-bottom: none;
 +
    }
 +
    .header {
 +
      padding-bottom: 0px;
 +
    }
 +
    </style>
</head>
</head>
<body id="top">
<body id="top">
 +
   <!--========================================================
   <!--========================================================
                             HEADER  
                             HEADER  
   =========================================================-->
   =========================================================-->
    
    
-
<header id="header">
+
<header id="header" class="header">
     <div class="banner1">
     <div class="banner1">
       <div id="stuck_container">
       <div id="stuck_container">
Line 76: Line 80:
                       <div class="grid_12">
                       <div class="grid_12">
                             <ul class="sf-menu">
                             <ul class="sf-menu">
-
                                        <li class="current"><a href="https://2014.igem.org/Team:UFMG_Brazil">Home</a></li>
+
                                <li><a href="https://2014.igem.org/Team:UFMG_Brazil">Home</a></li>
                                 <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Team">Team</a></li>
                                 <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Team">Team</a></li>
                                 <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Safety">Safety</a></li>
                                 <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Safety">Safety</a></li>
-
                                 <li><a href="#">Project</a>
+
                                 <li class="current"><a href="#">Project</a>
-
                                     <ul>
+
                                     <ul style="display:none;">
-
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Introduction">Introduction</a></li>
+
                                         <li><a href="https://2014.igem.org/Team:UFMG Brazil/Project/Intro">Introduction</a></li>
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Parts">Parts</a></li>
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Parts">Parts</a></li>
-
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Protocols">Protocols</a></li>
+
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Protocols">Protocols and results</a></li>
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Modelling">Modelling</a></li>
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Modelling">Modelling</a></li>
-
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Human_Practices">Human Practices</a></li>
+
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Policy">Policy and practices</a></li>
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Notebook">Notebook</a></li>
                                         <li><a href="https://2014.igem.org/Team:UFMG_Brazil/Project/Notebook">Notebook</a></li>
                                     </ul>
                                     </ul>
                                 </li>
                                 </li>
-
                                 <li><a href="#">Sponsors</a></li>
+
                                 <li><a href="#">Thanks to</a>
-
                                 <li><div style="padding-top:5px;"><img id="igemmenulogo" src="https://dl.dropboxusercontent.com/u/80760623/igem2014/images/Igemlogo_300px.png" alt=""></div></li>
+
                                    <ul style="display:none;">
 +
                                      <li>
 +
                                        <a href="https://2014.igem.org/Team:UFMG_Brazil/sponsors">Sponsors</a>
 +
                                      </li>
 +
                                      <li>
 +
                                        <a href="https://2014.igem.org/Team:UFMG_Brazil/attributions">Attributions</a>
 +
                                      </li>
 +
                                    </ul>
 +
                                 </li>
 +
                                <li>
 +
                                  <div>
 +
                                    <div style="padding-top:5px; display:inline-block;"><a href="https://igem.org/"><img id="igemmenulogo" src="https://static.igem.org/mediawiki/2014/6/60/Igemlogo_300px.png" alt=""></a></div>
 +
                                    <div style="padding-top:24px; display:inline-block;"><a href="#"><img id="topmenutoggle" src="https://static.igem.org/mediawiki/2014/5/5b/Onoff.png" alt="" style="cursor:pointer"></a></div>
 +
                                  </div>
 +
                                </li>
                             </ul>
                             </ul>
                         </div>
                         </div>
Line 97: Line 115:
           </nav>
           </nav>
       </div>
       </div>
 +
       <div class="container">
       <div class="container">
           <div class="row">
           <div class="row">
Line 103: Line 122:
                       <div class="title1">- Modelling -</div>
                       <div class="title1">- Modelling -</div>
                     </div>
                     </div>
-
                  <!--<h1><a href="index.html"><img src="images/logo.png" alt=""></a></h1>-->
+
                   <div class="slogan">USING OUR PCS TO DO THE FUNNY STUFF!</div>
-
                   <div class="slogan">Using our PCs to do the funny stuff!</div>
+
               </div>     
               </div>     
           </div>     
           </div>     
Line 112: Line 130:
<div class="clear"></div>
<div class="clear"></div>
-
<div id="wrapper_model">
+
  <!--========================================================
 +
                            CONTENT
 +
  =========================================================-->
-
<div class="model_content">
+
<div id="content">
 +
    <div class="bg4 p50">
 +
        <div class="container">
 +
            <div class="row">
 +
                <div class="grid_12">
 +
                  <h2>Beautiful models!</h2>
 +
                    <div class="block1">
 +
                      <h3 style="color: #2e3e4b;">Protein models</h3>
 +
                      <br>
-
<p> To obtain the three-dimensional structure of our conditional sensor designed to bind repetitive DNA sequences, we employed comparative modelling. We began searching for appropriate templates for the selected biobrick sequences of TALE (Bba_K747027, Bba_K747043, Bba_K747059, Bba_K747075 obtained from the registry, plus Bba_K1514002 and Bba_K1514003 we synthesized) + linker + hemiCherry1 (BBa_K1514000) or 2 (BBa_K1514001). These were submitted to a PSI-BLAST similarity search against the Protein Data Bank (PDB). Templates for each domain were selected based on the percentages of residue identity, e-values, alignment scores and sequence coverage. </p>
+
                      <h5><a href="#" onclick="return false;">To obtain the three-dimensional structure ...</a></h5>
-
<br>
+
                      <p>... of our conditional sensor designed to bind repetitive DNA sequences, we employed comparative modelling. We began searching for appropriate templates for the selected biobrick sequences of TALE (Bba_K747027, Bba_K747043, Bba_K747059, Bba_K747075 obtained from the registry, plus Bba_K1514002 and Bba_K1514003 we synthesized) + linker + hemiCherry1 (BBa_K1514000) or 2 (BBa_K1514001). These were submitted to a PSI-BLAST similarity search against the Protein Data Bank (PDB). Templates for each domain were selected based on the percentages of residue identity, e-values, alignment scores and sequence coverage.</p>
 +
                      <br>
 +
                     
 +
                      <p>To start modeling, the program Chimera 1.9 (Pettersen et al., 2004) was used for sequence aligment. The aligned sequences were generated with default values ​​and manual curation. To build the three-dimensional models of our chimera proteins, different templates were chosen for each protein region. Manual curation of the alignments obtained was performed using DNATagger (Scherer and Basso, 2008). Then, a set of at least 100 models was generated using Modeller 9.10 (Eswar et al., 2006). Structural characteristics of each protein part was analysed for the best models generated. Manual adjustment of torsional angles in the linker region were performed afterwards, using Swiss-PDB viewer (Johansson et al., 2012), and the quality of the final models was validated using the QMEAN Z-score calculation (Benkert et al., 2008).</p>
 +
                      <br>
-
<p>To start modeling, the program Chimera 1.9 (Pettersen et al., 2004) was used for sequence aligment.  The aligned sequences were generated with default values ​​and manual curation. To build the three-dimensional models of our chimera proteins, different templates were chosen for each protein region. Manual curation of the alignments obtained was performed using DNATagger (Scherer and Basso, 2008). Then, a set of at least 100 models was generated using Modeller 9.10 (Eswar et al., 2006). Structural characteristics of each protein part was analysed for the best models generated. Manual adjustment of torsional angles in the linker region were performed afterwards, using Swiss-PDB viewer (Johansson et al., 2012), and the quality of the final models was validated using the QMEAN Z-score calculation (Benkert et al., 2008).
+
                      <p>After obtaining our final models we performed a structural alignment of both mCherry parts against the active mcherry structure (PDB 2H5Q). This alignment enabled us to estimate the final structure of our models bound to DNA and the distance between both TALE domains in the DNA, to perform our mathematical modeling.</p>
-
</p><br>
+
                      <br>
 +
                      <h4>Results</h4>
-
<p>After obtaining our final models we performed a structural alignment of both mCherry parts  against the active mcherry structure (PDB 2H5Q). This alignment enabled us to estimate the final structure of our models bound to DNA and the distance between both TALE domains in the DNA, to perform our mathematical modeling.</p><br>
+
                      <div class="right"><img src="https://static.igem.org/mediawiki/2014/9/98/Polaroid_model1.png" alt=""></div>
 +
                      <p>Two PDB proteins were selected as templates for model building. For the N-terminal part of our molecule, the crystal structure of TAL effector (3UGM) was selected and for the C-terminal part, mCherry (2H5Q) was used. Except for the linker region, the templates had 100% coverage and close to 100% identity against our sequences (99.4% to mCherry1, 100% to mCherry2 and 92.9% for both TALE parts). After modeling we selected the best Z-DOPE scores models for each protein (figure 1). Our model consists of six concatenated TALES self-associated shaped as a right-handed superhelix wrapped around the DNA major groove and connected by a linker to a hemicherry beta barrel structure.</p>
 +
                      <br>
-
<p><span style = "font-weight: bold">Results</span></p><br>
+
                      <p>Assessment of model quality for each protein through the QMEAN Server showed that our models have high quality, with |Z-scores| lesser than 1. QMEAN is a composite scoring function which is able to derive both global and local error estimates on the basis of one single model. The QMEAN Z-score indicates how many standard deviations the score differs from the expected values ​​of experimental structures. This is illustrated in the two graphs in figure 2, where being closer to black better reflects and low Z-score and low standard deviation.</p>
 +
                      <br>
-
<p>Two PDB proteins were selected as templates for model building. For the N-terminal part of our molecule, the crystal structure of TAL effector (3UGM) was selected and for the C-terminal part, mCherry (2H5Q) was used. Except for the linker region, the templates had 100% coverage and close to 100% identity  against our sequences (99.4% to mCherry1, 100% to mCherry2 and 92.9% for both TALE parts). After modeling we selected the best Z-DOPE scores models for each protein (figure 1). Our model consists of six concatenated TALES self-associated shaped as a right-handed superhelix wrapped around the DNA major groove and connected by a linker to a hemicherry beta barrel structure.</p>
+
                      <div class="center"><img src="https://static.igem.org/mediawiki/2014/b/b2/Polaroid_model2.png" alt=""></div>
 +
                      <br>
-
<br>
+
                      <p>To estimate if our models would be able to bind to DNA while maintaining the restituted mCherry conformation, we aligned both parts to the structure of the active form and kept their TALE domains spatially in a linear configuration. This showed that our models are compatible with DNA binding and mCherry restitution. We also calculated the inner distance between both linked TALES, which resulted in 35 Å, suggesting that there must be approximately 10 DNA base pairs between each (GT)6 binding region (Figure 3).</p>
-
<div style = "margin: 0 auto; height: 582px; width: 884px; text-align: center;"><img src="https://static.igem.org/mediawiki/2014/2/27/UFMG_Brazil_modelling1.jpg" width=884px height=582px></img>
+
                      <div class="center"><img style="width:80%" src="https://static.igem.org/mediawiki/2014/7/78/Polaroid_model3.png" alt=""></div>
-
Figure 1: Both protein models with all parts builded linked to a repetitive (GT)n DNA string. They are:The six TALE parts (Dark and light green), Linker (grey) and each mCherry part (pink).
+
                      <br>
-
</div>
+
-
<br>
+
                      <h3 style="color: #2e3e4b;">Probabilistic models</h3>
-
<br>
+
                      <br>
-
<br>
+
                      <h5><a href="#" onclick="return false;">To estimate the chance of our protein binding to human DNA ...</a></h5>
-
<p>Assessment of model quality for each protein through the QMEAN Server showed that our models have high quality, with |Z-scores| lesser than 1. QMEAN is a composite scoring function which is able to derive both global and local error estimates on the basis of one single model. The QMEAN Z-score indicates how many standard deviations the score differs from the expected values ​​of experimental structures. This is illustrated in the two graphs in figure 2, where being closer to black better reflects and low Z-score and low standard deviation.</p>
+
                      <p>... we built a repeat library using as  template the human chromosome 1, using RepeatScout v1.0.5 (Price et al., 2005) and RepeatMasker 3.0 (Smit et al., 2010) programs. The repeat library was initially composed by all possible repetition patterns. Then, we selected just the (GT)n and (CA)n repetitions, which are recognized by our TALE protein domains (Figure1). In both cases, the most frequent tandem repeats sizes were between 15 and 24.</p>
 +
                      <br>
-
<br>
+
                      <div class="center"><img style="width:80%" src="https://static.igem.org/mediawiki/2014/0/05/Model_prob1.png" alt=""></div>
 +
                      <br>
-
<div style = "margin: 0 auto; height: 419px; width: 770px; text-align: center;"><img src="https://static.igem.org/mediawiki/2014/8/8f/UFMG_Brazil_modelling3.jpg" width=770px height=419px></img>
+
                      <p>After filtering only repetitive sequences with at least 12 tandem repetitions, we calculated the chances to find these elements in different DNA fragments sizes in chromosome 1. Our results show an increased chance of finding these elements into fragments bigger than 2000 bp, when compared to smaller fragments (Figure 2). Considering  the binding of a hemiCherry sensor to a DNA strand, the intensity of a 2000 bp fragment can have an increased intensity 10 times higher than a smaller fragment of only 200bp.</p>
-
Figure 2: Comparison with non redundant set of PDB structures for both query models (Red).
+
                      <br>
-
</div>
+
-
<br>
+
                      <div class="center"><img style="width:80%" src="https://static.igem.org/mediawiki/2014/0/0e/Model_prob2.png" alt=""></div>
-
<br>
+
                      <br>
-
<br>
+
 
-
 
+
                    </div>
-
<p>To estimate if our models would be able to bind to DNA while maintaining the restituted mCherry conformation, we aligned both parts to the structure of the active form and kept their TALE domains spatially in a linear configuration. This showed that our models are compatible with DNA binding and mCherry restitution. We also calculated the inner distance between both linked TALES, which resulted in 35 Å, suggesting that there must be approximately 10 DNA base pairs between each (GT)6 binding region (Figure 3).</p>
+
                </div>
-
 
+
            </div>
-
<div style = "margin: 0 auto; height: 489px; width: 801px; text-align: center;"><img src="https://static.igem.org/mediawiki/2014/2/27/UFMG_Brazil_modelling1.jpg" width=801px height=489px></img>
+
        </div>
-
Figure 3: Estimated model of active mcherry structure performed by an structural alignment. A 35 Å inner distance suggests a 10 base pairs gap between the two linked TALEs.
+
    </div>
 +
      <div class="bg2 p29">
 +
            <div class="container">
 +
                <div class="row">
 +
                    <div class="grid_12 wrap">
 +
                        <div class="thumbnail">
 +
                          <h3>References</h3>
 +
                            <div style="text-align: left; font-size: 80%;">
 +
                              <br>
 +
                            <p><span>Scherer N.M. and Basso D.M. (2008) DNATagger, colors for codons. Genet. Mol. Res. 7 (3): 853-860</span>
 +
                            <br><br>
 +
                            <p><span>Eswar, N., Marti-Renom, M. A., Webb, B., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U., Sali, A. (2006) Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30, 2006.</span>
 +
                            <br><br>
 +
                            <p><span>Johansson, M.U., Zoete V., Michielin O. & Guex N. (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer BMC Bioinformatics, 13:173.</span>
 +
                            <br><br>
 +
                            <p><span>Benkert, P., Tosatto, S.C.E. and Schomburg, D. (2008). "QMEAN: A comprehensive scoring function for model quality assessment." Proteins: Structure, Function, and Bioinformatics, 71(1):261-277</span>
 +
                            <br><br>
 +
                            <p><span>Price A.L., Jones N.C. and Pevzner P.A. 2005.  De novo identification of repeat families in large genomes.  To appear in Proceedings of the 13 Annual International conference on Intelligent Systems for Molecular Biology (ISMB-05). Detroit, Michigan.</span>
 +
                            <br><br>
 +
                            <p><span>Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-3.0. 1996-2010 &lt;http://www.repeatmasker.org&gt;.</span>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
</div>
</div>
-
<br>
+
  <!--========================================================
-
<br>
+
                            FOOTER
-
<br>
+
  =========================================================-->
-
<p><span style = "font-weight: bold;">References</span></p>
+
<footer id="footer">
 +
      <div class="container">
 +
          <div class="row">
 +
              <div class="grid_12">
 +
                  <a class="logo1" href="https://2014.igem.org/Team:UFMG_Brazil">
 +
                    <img src="https://static.igem.org/mediawiki/2014/8/84/Yeastlogo_small_gray.png" alt="">
 +
                  </a>
 +
                  <div class="copy">
 +
                      <span>&nbsp;&copy;</span>
 +
                      <span id="copyright-year"></span>
 +
                      <span>|</span>
 +
                      <span><a href="https://2014.igem.org/Team:UFMG_Brazil">Team UFMG Brazil</a></span>
 +
                  </div>
 +
              </div>     
 +
          </div>
 +
      </div> 
 +
  </footer>
-
<br>
+
    <script src="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/jquery.js&action=raw&ctype=text/javascript"></script>
 +
    <script src="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/jquery-migrate-1.2.1.js&action=raw&ctype=text/javascript
 +
"></script>
 +
    <script src="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/owl.carousel.js&action=raw&ctype=text/javascript
 +
"></script>     
 +
    <script src="https://2014.igem.org/wiki/index.php?title=Template:UFMG_Brazil/script.js&action=raw&ctype=text/javascript
 +
"></script>
-
<p>Scherer N.M. and Basso D.M. (2008) DNATagger, colors for codons. Genet. Mol. Res. 7 (3): 853-860</p>
+
    <meta name="viewport" content="width=device-width,initial-scale=1.0,user-scalable=0">
 +
    <script>
 +
        $(document).ready(function() {
 +
            $("#owl").owlCarousel({
 +
                items: 4,
 +
                itemsDesktop: [1299, 4],
 +
                itemsTablet: [995, 3],
 +
                itemsTabletSmall: [767, 1],
 +
                itemsMobile: [479, 1],
 +
                lazyLoad: true,
 +
                pagination: false,
 +
                navigation: true
 +
            });
 +
        });
 +
        $( document ).ready(function() {
 +
          $('#topmenutoggle').click(function(){
 +
            toggleMenu();
 +
          });
 +
        });
 +
        function toggleMenu(){
 +
          if($('#top-section').css("height") == "25px"){
 +
              $('#top-section').css("height", "10px");
 +
              $('.left-menu').hide();
 +
              $('.right-menu').hide();
 +
          }
 +
          else{
 +
              $('#top-section').css("height", "25px");
 +
              $('.left-menu').show();
 +
              $('.right-menu').show();
 +
          }
 +
        }
 +
    </script>
-
<br>
+
    <a style="margin-right: -49px; right: 50%; display: none;" href="#" id="toTop" class="fa fa-chevron-up"></a>
-
 
+
</body>
-
<p>Eswar, N., Marti-Renom, M. A., Webb, B., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U., Sali, A. (2006) Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30, 2006.
+
-
</p>
+
-
 
+
-
<br>
+
-
 
+
-
<p>Johansson, M.U., Zoete V., Michielin O. & Guex N. (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer BMC Bioinformatics, 13:173.</p>
+
-
 
+
-
<br>
+
-
 
+
-
<p>Benkert, P., Tosatto, S.C.E. and Schomburg, D. (2008). "QMEAN: A comprehensive scoring function for model quality assessment." Proteins: Structure, Function, and Bioinformatics, 71(1):261-277</p>
+
-
 
+
-
 
+
-
</div>
+
-
</div>
+
</html>
</html>
-
{{UFMG_Brazil/footer}}
 

Latest revision as of 02:12, 18 October 2014

Home UFMG Team

Beautiful models!

Protein models


To obtain the three-dimensional structure ...

... of our conditional sensor designed to bind repetitive DNA sequences, we employed comparative modelling. We began searching for appropriate templates for the selected biobrick sequences of TALE (Bba_K747027, Bba_K747043, Bba_K747059, Bba_K747075 obtained from the registry, plus Bba_K1514002 and Bba_K1514003 we synthesized) + linker + hemiCherry1 (BBa_K1514000) or 2 (BBa_K1514001). These were submitted to a PSI-BLAST similarity search against the Protein Data Bank (PDB). Templates for each domain were selected based on the percentages of residue identity, e-values, alignment scores and sequence coverage.


To start modeling, the program Chimera 1.9 (Pettersen et al., 2004) was used for sequence aligment. The aligned sequences were generated with default values ​​and manual curation. To build the three-dimensional models of our chimera proteins, different templates were chosen for each protein region. Manual curation of the alignments obtained was performed using DNATagger (Scherer and Basso, 2008). Then, a set of at least 100 models was generated using Modeller 9.10 (Eswar et al., 2006). Structural characteristics of each protein part was analysed for the best models generated. Manual adjustment of torsional angles in the linker region were performed afterwards, using Swiss-PDB viewer (Johansson et al., 2012), and the quality of the final models was validated using the QMEAN Z-score calculation (Benkert et al., 2008).


After obtaining our final models we performed a structural alignment of both mCherry parts against the active mcherry structure (PDB 2H5Q). This alignment enabled us to estimate the final structure of our models bound to DNA and the distance between both TALE domains in the DNA, to perform our mathematical modeling.


Results

Two PDB proteins were selected as templates for model building. For the N-terminal part of our molecule, the crystal structure of TAL effector (3UGM) was selected and for the C-terminal part, mCherry (2H5Q) was used. Except for the linker region, the templates had 100% coverage and close to 100% identity against our sequences (99.4% to mCherry1, 100% to mCherry2 and 92.9% for both TALE parts). After modeling we selected the best Z-DOPE scores models for each protein (figure 1). Our model consists of six concatenated TALES self-associated shaped as a right-handed superhelix wrapped around the DNA major groove and connected by a linker to a hemicherry beta barrel structure.


Assessment of model quality for each protein through the QMEAN Server showed that our models have high quality, with |Z-scores| lesser than 1. QMEAN is a composite scoring function which is able to derive both global and local error estimates on the basis of one single model. The QMEAN Z-score indicates how many standard deviations the score differs from the expected values ​​of experimental structures. This is illustrated in the two graphs in figure 2, where being closer to black better reflects and low Z-score and low standard deviation.



To estimate if our models would be able to bind to DNA while maintaining the restituted mCherry conformation, we aligned both parts to the structure of the active form and kept their TALE domains spatially in a linear configuration. This showed that our models are compatible with DNA binding and mCherry restitution. We also calculated the inner distance between both linked TALES, which resulted in 35 Å, suggesting that there must be approximately 10 DNA base pairs between each (GT)6 binding region (Figure 3).


Probabilistic models


To estimate the chance of our protein binding to human DNA ...

... we built a repeat library using as template the human chromosome 1, using RepeatScout v1.0.5 (Price et al., 2005) and RepeatMasker 3.0 (Smit et al., 2010) programs. The repeat library was initially composed by all possible repetition patterns. Then, we selected just the (GT)n and (CA)n repetitions, which are recognized by our TALE protein domains (Figure1). In both cases, the most frequent tandem repeats sizes were between 15 and 24.



After filtering only repetitive sequences with at least 12 tandem repetitions, we calculated the chances to find these elements in different DNA fragments sizes in chromosome 1. Our results show an increased chance of finding these elements into fragments bigger than 2000 bp, when compared to smaller fragments (Figure 2). Considering the binding of a hemiCherry sensor to a DNA strand, the intensity of a 2000 bp fragment can have an increased intensity 10 times higher than a smaller fragment of only 200bp.



References


Scherer N.M. and Basso D.M. (2008) DNATagger, colors for codons. Genet. Mol. Res. 7 (3): 853-860

Eswar, N., Marti-Renom, M. A., Webb, B., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U., Sali, A. (2006) Comparative Protein Structure Modeling With MODELLER. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Supplement 15, 5.6.1-5.6.30, 2006.

Johansson, M.U., Zoete V., Michielin O. & Guex N. (2012) Defining and searching for structural motifs using DeepView/Swiss-PdbViewer BMC Bioinformatics, 13:173.

Benkert, P., Tosatto, S.C.E. and Schomburg, D. (2008). "QMEAN: A comprehensive scoring function for model quality assessment." Proteins: Structure, Function, and Bioinformatics, 71(1):261-277

Price A.L., Jones N.C. and Pevzner P.A. 2005. De novo identification of repeat families in large genomes. To appear in Proceedings of the 13 Annual International conference on Intelligent Systems for Molecular Biology (ISMB-05). Detroit, Michigan.

Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-3.0. 1996-2010 <http://www.repeatmasker.org>.