Team:METU Turkey modeling

From 2014.igem.org

(Difference between revisions)
Line 124: Line 124:
<!-- Content goes here -->
<!-- Content goes here -->
 +
<h3>Interpretation of Kill-Switch:</h3>
 +
<p>Arabinose Promoter: (K808000) is activated when arabinose is present.</p>
 +
<p>Antiholin: (K515004) is specific negative regulator of holin function.</p>
 +
<p>TetR+LVA: (C0040) tetracycline repressor modified with LVA tail for rapid degradation of the protein and faster fall time for the emission.</p>
 +
<p>TetR Promoter: (R0040) TetR repressible promoter.</p>
 +
<p>T4 Endolysin: (K112806) degrades peptiodoglycan layer.</p>
 +
<p>Holin: (K124014) protein causes pores in the inner membrane, which allows lysozyme to access and brakedown the peptidoglycan of the cell wall, causing lysis and death.</p>
<img src="https://static.igem.org/mediawiki/2014/e/ea/Grafik2.jpg">
<img src="https://static.igem.org/mediawiki/2014/e/ea/Grafik2.jpg">
<h3> How does our project work?</h3>
<h3> How does our project work?</h3>
<p> Totally degradation of PET to pyruvate is done by E. coli. </p>
<p> Totally degradation of PET to pyruvate is done by E. coli. </p>
-
 
+
<h3>SimBiology Results of our Kill-Switch Model:</h3>
<img src="https://static.igem.org/mediawiki/2014/2/2f/Grafik3.jpg">
<img src="https://static.igem.org/mediawiki/2014/2/2f/Grafik3.jpg">

Revision as of 00:27, 18 October 2014

Team:METU Turkey/Templates/Navigationbar

HOME TEAM PROJECT PARTS MODELING INTERLAB STUDY
POLICY&PRACTICE CHARACTERIZATION SAFETY ATTRIBUTIONS GALLERY PROTOCOLS

Our Project's Model

This graph shows us that E.coli during adding catechol to media, diffuses quickly because of the high diffusion rate. Therefore you can see catechol concentration inintiates with a high value. Then our bacteria degrade catechol to 2-hydoxymuconate semialdehyde then it degrades to 2-oxopent 4-enoate then continues to 4-hydroxy 2-oxopentoonate, finally we get our last degraded product of pyruvate. Our paramaeters of this cycle shows us that. While our bacteria diffuses catechol in its cytosol, its enzymes starts to degrade catechol fast to obtain pyruvate.

SimBiology Results of our Kill-Switch Model:

Interpretation of Kill-Switch:

Arabinose Promoter: (K808000) is activated when arabinose is present.

Antiholin: (K515004) is specific negative regulator of holin function.

TetR+LVA: (C0040) tetracycline repressor modified with LVA tail for rapid degradation of the protein and faster fall time for the emission.

TetR Promoter: (R0040) TetR repressible promoter.

T4 Endolysin: (K112806) degrades peptiodoglycan layer.

Holin: (K124014) protein causes pores in the inner membrane, which allows lysozyme to access and brakedown the peptidoglycan of the cell wall, causing lysis and death.

How does our project work?

Totally degradation of PET to pyruvate is done by E. coli.

SimBiology Results of our Kill-Switch Model:

Who will our project help?

Our project will help the environment to become cleaner.

Why did we choose this project?

The biodegradation of plastic bottles took thousands of years, and the degrading process emits toxic chemicals into the air. Our project aims to clean enviroment with the degredation of PET to pyruvate by E.coli. With this project,while the environment will be cleaned from PET, the E.coli would add pyruvate to the cell cycle and use it as a new source.

Our Supporter: