Team:ITESM-CEM/Project/Data

From 2014.igem.org

(Difference between revisions)
Line 72: Line 72:
       <sub2><a href="#One" style="color: #FFF;">PCR's</a></sub2>
       <sub2><a href="#One" style="color: #FFF;">PCR's</a></sub2>
-
       <sub2><a href="#Two" style="color: #FFF;">Two</a></sub2>
+
       <sub2><a href="#Two" style="color: #FFF;">Digestions</a></sub2>
       <sub2><a href="#Three" style="color: #FFF;">Three</a></sub2>
       <sub2><a href="#Three" style="color: #FFF;">Three</a></sub2>
       <sub2><a href="#Four" style="color: #FFF;">Protein Expression</a></sub2>
       <sub2><a href="#Four" style="color: #FFF;">Protein Expression</a></sub2>
Line 139: Line 139:
<gotop><a href="#top">Back to top ↑</a></gotop><br><br>
<gotop><a href="#top">Back to top ↑</a></gotop><br><br>
-
<a name="Two"><h2>Experiment Two</h2></a>  
+
<a name="Two"><h2><u>Gene isolation testing via digestion</u></h2></a>  
-
       <p>Etiam tempus mi pulvinar purus iaculis bibendum. Vivamus vel risus eu enim volutpat finibus. Nullam bibendum est sit amet arcu lobortis, id laoreet ex vestibulum. Curabitur fringilla eleifend lacus, nec ornare nibh imperdiet sed. Maecenas vel velit consectetur, tempus libero quis, consectetur ex. Nulla porttitor pharetra velit. Curabitur tristique, dolor ut sodales euismod, diam diam ultricies arcu, at tincidunt tellus neque in felis. Etiam ut tempor ligula. Sed at dui sapien.</p>
+
        
 +
<h4>CMV</h4>
 +
 
 +
<p style="text-align: justify; text-justify: inter-word;">A digestion proof of the CMV construction in pSB1C3 is shown on lane 1 (Figure A); when compared to the analysis performed in silico (Figure B), both band patterns coincided.</p><br>
 +
 
 +
<p>imagen</p><br>
 +
 
 +
<p><pie><b>Figure A.</b> Lane 5. CMV digestion with XhoI. </p></pie><br>
 +
 
 +
<p>imagen</p><br>
 +
 
 +
<p><pie><b>Figure B.</b> In silico CMV-psB1C3 digestion. </p></pie><br>
 +
 
 +
<h4>NeoR</h4>
 +
 
 +
<p style="text-align: justify; text-justify: inter-word;">On the second, third and fourth lanes we can see the NeoR in pSB1C3 digestion with XhoI (Figure A). Even though dim bands can be seen because of the dilution of the original extraction, the banding pattern complies with what was expected from the in silico digestion of this construct (Figure B). The longest DNA fragment is undigested plasmid.</p><br>
 +
 
 +
<p>imagen</p><br>
 +
 
 +
<p><pie><b>Figure A.</b> Lanes 2-4. NeoR digestion with XhoI. </p></pie><br>
 +
 
 +
<p>imagen</p><br>
 +
 
 +
<p><pie><b>Figure B.</b> In silico NeoR-psB1C3 digestion. </p></pie><br>
 +
 
 +
<h4>BGHPA</h4>
 +
 
 +
<p style="text-align: justify; text-justify: inter-word;">A digestion proof of the BGHPA construction in pSB1C3 is shown on lane 5 (Figure A). When compared to the analysis performed in silico (Figure B), both band patterns coincided.</p><br>
 +
 
 +
<p>imagen</p><br>
 +
 
 +
<p><pie><b>Figure A.</b> Lane 5. BGHPA digestion with XhoI. </p></pie><br>
 +
 
 +
<p>imagen</p><br>
 +
 
 +
<p><pie><b>Figure B.</b> In silico BGHPA-psB1C3 digestion. </p></pie><br>
 +
 
<gotop><a href="#top">Back to top ↑</a></gotop><br><br>
<gotop><a href="#top">Back to top ↑</a></gotop><br><br>

Revision as of 23:15, 17 October 2014

TEC-CEM | Project

ITESM-CEM | Enzy7-K me

Project 3014

 

Results & Discussion

PCR's for gene isolation

Gel 1.High Fidelity PCRs Electrophoresis Gel . Well content: 2) NeoR PCR(786pb) 3)CMV Promoter PCR(588bp) 4) BGHPA PCR (228bp).


imagen


Biobricks in plasmid psB1C3

BGHPA

The ligation (view Material and Methods) of BGHPA was made with J04450 (psB1C3 with RFP protein). The BB_J04450 by itself produces red colonies and grows in the antibiotic Cloramphenicol. After the ligation and transformation, only the white colonies were selected. An extraction from a white colony growing on 50ml LB Cam+ was made in order to perform gel electrophoresis as shown in figure B.


imagen


Figure A. Isolated BGHPA transformed colony.


imagen


Figure B. BGHPA in plasmid psB1C3 gel electrophoresis. Lane 2.


CMV

The ligation (view material and methods) of CMV was made with J04450 (psB1C3 with RFP protein). The BB_J04450 by itself produces red colonies and grows in the antibiotic Cloramphenicol. After the ligation and transformation, only the white colonies were selected. An extraction from a white colony growing on 50ml LB Cam+ was made in order to perform gel electrophoresis as shown in figure B.


imagen


Figure A. Isolated CMV transformed colony.


imagen


Figure B. CMV in plasmid psB1C3 gel electrophoresis. Lanes 1-3.


NeoR

The ligation (view material and methods) of NeoR was made with J04450 (psB1C3 with RFP protein). The BB_J04450 by itself produces red colonies and grows in the antibiotic Cloramphenicol. After the ligation and transformation 8 (Figure A), only the white colonies were selected. An extraction from a white colony growing on 50ml LB Cam+ was made in order to perform gel electrophoresis as shown in Figure B. On lane 8, NeoR extraction is shown with the three bands isoforms, they are barely visible because the plasmid extraction was diluted 5 fold.


imagen


Figure A. Isolated NeoR transformed colony.


imagen


Figure B. NeoR in plasmid psB1C3 gel electrophoresis.
Lanes:
2-4. NeoR in psB1C3 digestion with XhoI.
6-8. NeoR in psB1C3.
10-12. CMV in psB1C3.


Back to top ↑

Gene isolation testing via digestion

CMV

A digestion proof of the CMV construction in pSB1C3 is shown on lane 1 (Figure A); when compared to the analysis performed in silico (Figure B), both band patterns coincided.


imagen


Figure A. Lane 5. CMV digestion with XhoI.


imagen


Figure B. In silico CMV-psB1C3 digestion.


NeoR

On the second, third and fourth lanes we can see the NeoR in pSB1C3 digestion with XhoI (Figure A). Even though dim bands can be seen because of the dilution of the original extraction, the banding pattern complies with what was expected from the in silico digestion of this construct (Figure B). The longest DNA fragment is undigested plasmid.


imagen


Figure A. Lanes 2-4. NeoR digestion with XhoI.


imagen


Figure B. In silico NeoR-psB1C3 digestion.


BGHPA

A digestion proof of the BGHPA construction in pSB1C3 is shown on lane 5 (Figure A). When compared to the analysis performed in silico (Figure B), both band patterns coincided.


imagen


Figure A. Lane 5. BGHPA digestion with XhoI.


imagen


Figure B. In silico BGHPA-psB1C3 digestion.


Back to top ↑

Experiment Three

Proin aliquam nibh id elementum pellentesque. Suspendisse mollis est ut felis sagittis mollis. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam accumsan ex ante, quis lobortis erat fermentum ac. Sed et egestas libero. Donec id diam vitae leo consequat interdum. Ut in sem in quam pretium finibus vitae non lectus.

Back to top ↑

Recombinant Protein Expression

The samples were loaded in a 15% acrylamide gel, using Precision Plus Protein TM Dual Color Standards, for 20 minutes/90 V for the stacking gel and 60 minutes/150V for the resolving gel. The results are now presented:


Only the samples shown in the image before were the ones that presented notable bands that represent our protein of interest. As expected, the most remarked band is the one of the time 3, which means that inductions was taken correctly and more protein was produced, in other words, the protein was overexpressing. The band marked with the arrow represents a protein that weights approximately 34 kDa, which corresponds to the molecular weight of oxoacyl reductase according to ExPASy’s Compute pI/MW tool.


7-dehydratase was analyzed by SDS-PAGE in a 15% acrylamide gel using Precision Plus Protein TM Unstained Standards, for 20 minutes/90 V for the stacking gel and 90 minutes/110V for the resolving gel. Four samples were taken, including one before and after induction with IPTG, one from the soluble phase and one from the inclusion bodies; all prepared with Laemmli buffer. The results are shown in the image below.


No analysis of solubility was realized due to the quantity of protein. It was supposed to be done exactly the same than oxoacyl reductase, as the protein was found in a notable way in the inclusion bodies as shown in the lane 5.


For both enzymes no further work was done. After the identification of each of them, and after the analysis of solubility, the proteins have to be purified by affinity chromatography with a Invitrogen Ni-NTA Agarose column, taking the advantage of the histidine tag added to the protein. After the purification, enzymatic parameters would be determined by the interaction of the enzymes with the substrate; 7β-Hydroxycholesterol for cholesterol oxidase, and 5-Cholesten-3β-ol-7-one for 7-dehydratase and oxoacyl reductase.



Back to top ↑

NeoR Results

Results obtained from experimentation.









Back to top ↑