Team:ETH Zurich/project/overview/summarysimple
From 2014.igem.org
You might be wondering where these patterns on snea snail shells come from. What if they would come from a simple rule, followed by all cells on the shell ?
Automaton Explorer Automaton Explorer
rule: 30 start:
From MathWorld: "A cellular automaton is a collection of 'colored' cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules based on the states of neighboring cells." This example explores binary, nearest-neighbor, one-dimensional automata, of which there are 256 (28) possible rules. The eight possible outcomes for the current rule are shown across the top; click to toggle the selected bit.
Gitorious
Activities Projects Teams About
<script>
/** Depends on globals: rule, w, h, mode. */ function cell() { var d = pv.range(h).map(function() { return pv.range(w).map(function() { return 0; }); }), r = pv.range(8).map(function(i) { return rule >> i & 1; }); if (start == "point") { d[0][w >> 1] = 1; } else { for (var x = 0; x < w; x++) { d[0][x] = cell.random(x); } } for (var y = 1; y < h; y++) { var p = d[y - 1], c = d[y]; for (var x = 0; x < w; x++) { c[x] = r[p[x - 1] << 2 | p[x] << 1 | p[x + 1]]; } } return d; } cell.$random = {}; /** Caches random output to make exploration deterministic. */ cell.random = function(i) { return i in cell.$random ? cell.$random[i] : (cell.$random[i] = Math.random() < .5 ? 0 : 1); };
</script>