Team:Edinburgh/HP/
From 2014.igem.org
IntroductionThrough the introduction of metabolic wiring to iGEM we are aiming to get one step closer to creating multicellular bacterial systems, with each cell or strain having a particular task. One particularly interesting feature of this multicellular system would be its modularity. Separate parts would complement each other by fulfilling specific tasks for the generation of the ‘final’ product. In other words, the goal is to achieve some sort of division of labour between the different components of a system, potentially striving towards some degree of “intelligence”. There has been a lot of research done on division of labour in various systems, biological and otherwise. It has been found that most of those systems have naturally evolved towards the state of divided labour. However, with the advancement of Synthetic Biology (which we are trying to contribute to with our scientific project), we are coming towards being capable of consciously designing modular, multi-cellular systems. Therefore, it is crucial to research and fully understand how and why the natural systems have evolved, so that, in future, we can apply those principles when doing our own designs. This leads us to the following questions, which we shall attempt to answer through our Policy and Practices approach: What is the role of division of labour in a system?
There are many examples in the literature, from which we could draw conclusions, and we shall introduce some of these here. However, we also noticed throughout the course of our own project that iGEM teams have in fact some very interesting ways of dividing up workload themselves. We therefore explored the structure and work dynamics of 6 other iGEM teams as well as reflecting on our own. The ultimate goal of these reflections was to isolate recurring principles in division of labour and to eventually use those as guidance for the further design of our own bacterial system. |