Tracks/Measurement
From 2014.igem.org
iGEM 2014 Measurement New Track
Introduction
Precise measurements lie at the foundation of every scientific discipline, including synthetic biology. The limits of our knowledge are set by how well we can connect observations to reproducible quantities that give insight. Measurement is also an act of communication, allowing researchers to make meaningful comparisons between their observations. The science and technology of measurement are easily overlooked, because measuring devices are so familiar to us, but behind even the simplest devices lies an elaborate infrastructure. Consider a laboratory pipette. How accurate are the volumes it dispenses? How similar is it to other pipettes? How do you know? The answers to these questions are a complex story involving everything from the speed to light in vacuum to the atomic properties of cesium. In synthetic biology, measurement is a critical challenge that is receiving and increasing amount of attention each year. For example, one of the long-standing goals of both iGEM and synthetic biology at large, is to characterize biological parts, so that they can be more easily used for designing new systems. The aim of the iGEM Measurement Track is to get students informed and excited about these problems, and to highlight the successes that teams are able to achieve in the area of measurement. The Measurement Track also aims to find out what measurement assays teams have available and to lay groundwork for future more complex measurement activities in iGEM.
Measurement Track Committee
We have a great committee to help coordinate the Measurement track in 2014.
- Chair: Jacob Beal, Raytheon BBN Technologies
- Traci Haddock, Boston University
- Jim Hollenhorst, Agilent Technologies