Team:Paris Bettencourt/Project/Odor Library

From 2014.igem.org

Revision as of 17:29, 17 October 2014 by Ewintermute (Talk | contribs)

BACKGROUND

Synthetic enzymes can produce odors that humans experience directly, without special instruments. The banana and wintergreeen smell BioBricks are iGEM icons, and a favorite way to introduce genetic engineering. Like colors, smells can be combined to create new experiences. An expanded library of easy-to-use odor enzymes would take synthetic biology to new audiences for creativity, beauty and fun!

AIMS

We want to standardize and simplify existing smell-producing BioBricks for banana, wintergreen, lemon and rain. We want to create new BioBricks for the aromas of popcorn and jasmine. A useful palette of genetic odors should follow standard organization principles and work "right out of the box" for anyone who wants to transform and play with odor genes.

RESULTS

We created BioBricks coding for sequences for different enzymes to nullify the bad odor produced by E. coli and produce the smells that compose the main odor categories perceived by humans. The BioBricks submitted to be BioBrick registry for this portion of our project were: XXX

Aims and Achievement Introduction Results Methods

Aims and Achievement

Here we present the design of an odor palette. It is composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with characteristic smells. We included smells with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings.

Introduction

There are complex relations among the stereochemistry of volatile compounds, their ratio within a particular mix, the amount of active olfactory receptors expressed in the smeller, as well as the distribution, and interaction of the different olfactory receptor neurons (ORNs). Odors spark neurochemical signals that are processed in different areas of the brain; they trigger complex cognitive processes that affect emotional responses such as motivation and memory. Although the precise molecular mechanisms behind odor perception have not been fully understood, there has been significant advance in the biosynthesis of organic volatile compounds using bacterial and fungal systems.

Results

Proper BioBrick characterization is needed before tinkering with expression levels; the possibility to change ribosomal binding sites according to the desired expression is included in our design. We would also like to develop auto-inducible smelly systems, as well as broaden the available tones in our palette.

Methods

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut imperdiet diam eget quam imperdiet imperdiet. Mauris dapibus risus felis, sed ornare diam accumsan aliquet. Sed eu turpis porta, porttitor tortor et, condimentum augue. Curabitur a maximus nisi. Vivamus vitae magna ex. Donec congue auctor odio vitae tempus. In a gravida neque, et tristique tortor. Phasellus a odio sit amet enim ornare lobortis. Morbi sodales, diam non rutrum aliquam, ligula mauris consectetur urna, sed interdum quam risus sit amet enim. Aenean euismod enim magna, id pretium eros molestie non. Proin rutrum lobortis leo, sit amet congue erat. Nulla congue pellentesque augue porta dignissim. Pellentesque quis ex sollicitudin, condimentum risus varius, aliquet ipsum. Ut pulvinar aliquet maximus. Praesent imperdiet interdum commodo.

Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
+33 1 44 41 25 22/25
paris-bettencourt-igem@googlegroups.com
Copyright (c) 2014 igem.org. All rights reserved.