Team:Hendrix Arkansas/Project

From 2014.igem.org

Revision as of 05:29, 17 October 2014 by NBeggs (Talk | contribs)


Using synthetic biology to engineer a visible alkane-detecting strain of Yarrowia lipolytica yeast

Abstract

This summer, Hendrix College entered the first Arkansas team to compete in the International Genetically Engineered Machine competition (iGEM). iGEM is an undergraduate synthetic biology competition, which is dedicated to education and competition, advancement of synthetic biology, and the development of open community and collaboration. The overall goal of our project is to engineer a biological machine that can detect cancer. Skin cancers, such as melanoma, are known to give off volatile compounds that can be detected by trained dogs. The volatile compounds given off by cancer cells include several alkanes. The purpose of our experiment is to engineer a strain of Yarrowia lipolytica that is capable of detecting and growing on alkanes to turn color in the presence of these volatile compounds. It is our hope that we can use this yeast to cheaply and non-invasively (perhaps in a cancer detecting band-aid) to detect melanoma. In order to achieve our goal, we will build a reporter construct that uses an alkane sensitive promoter to drive the expression of a blue chromoprotein from the coral Acropora millepora. This construct should cause the yeast to turn blue in the presence of alkanes. We first want to test the ability of the blue chromoprotein to be expressed in yeast cells, so we have generated an expression vector to express the gene in Saccharomyces cerevisiae. We have also obtained a sample of Yarrowia lipolytica and are in the process of generating the parts required to build the reporter construct. These parts include an alkane response element (3xARE1), a leu minimal promoter, our reporter gene (blue chromoprotein), and a terminator (XPR2). Once the reporter construct is constructed, we will clone it into a Yarrowia lipolytica expression vector and integrate it into the yeast. If our experiment is successful, our cancer detecting band-aid could allow for easier and earlier detection of melanoma.

References
  1. Abaffy, T., Möller, M., Riemer, D. D., Milikowski, C., and DeFazio, R. A. A case report - Volatile metabolomic signature of malignant melanoma using matching skin as a control. J Cancer Sci Ther. 2011; 3:140- 144.
  2. Alieva, N. O., K.A. Konzen, S.F. Field, E. A. Meleshkevitch, M. E. Hunt, V. Beltran-Ramiraz, D. J. Miller, J. Wiedermann, A. Salid, M. V. Matz (2008) Diversity and Evolution of Coral Flourescent Proteins. PLoS vol 3, issue 7.
  3. Barth, G., C. Gaillardin (1997) Physiology and Genetics of the Dimorphic Fungus Yarrowia lipolytica. FEMS Microbiology Reviews vol. 19, pp. 219-237.
  4. Blanchin-Roland, S., R. R. Cordero Otero, C. Gaillardin (1994) Two Upstream Activation Sequences Control the Expression of the XPR2 Gene in the Yeast Yarrowia lipolytica. Molecular and Cellular Biology, vol. 14, NO. 1, pp. 327-338.
  5. Blazeck, J., L. Liu, H. Redden, H. Alper (2011) Tuning Gene Expression in Yarrowia lipolytica by a Hybrid Promoter Approach. Applied and Environmental Microbiology, vol. 77, NO. 22, pp. 7905- 7914.
  6. Davidow, L. S., M. M. O’Donnell, F. S. Kaczmarek, D. A. Pereira, J. R. DeZoeuw, A. E. Franke (1987) Cloning and Sequencing of the Alkaline Extracellular Protease Gene of Yarrowia lipolytica. Journal of Bacteriology, vol. 169, NO. 1, pp. 4621-4629.
  7. Hirakawa, K., S. Kobayashi, T. Inoue, S. Endoh-Yamagami, R. Fukuda, A. Ohta (2009) Yas3p, an OPi1 Family Transcription Factor, Regulates Cytochrome P450 Expression in Response to n-Alkanes in Yarrowia lipolytica. The Journal of Biological Chemistry, vol. 284, NO. 11, pp. 7126-7137.
  8. Iida, T., A. Ohta, M. Takagi (1998) Cloning and Characterization of an n-Alkane-Inducible Cytochrome P450 Gene Essential for n-Decane Assimilation by Yarrowia lipolytica. Yeast, vol. 14, pp. 1387- 1397.
  9. Juretzek, T., H. Wang, J. Nicaud, S. Mauersberger, G. Barth, (2000) Comparison of Promoters Suitable for Regulated Overexpression of Beta-Galactose in the Alkane-Utilizing Yeast Yarrowia lipolytica. Biotechnol. Bioprocessing Eng. vol.5, pp. 320-326.
  10. Juretzek, T., M. Le Dall, S. Mauersberger, C. Gaillardin, G. Barth, J. Nicaud (2001) Vectors for Gene Expression and Amplification in the Yeast Yarrowia lipolytica. Yeast, vol. 18, pp. 97-113.
  11. Madzak, C., S. Blanchin-Roland, R. R. Cordero Otero, C. Gaillardin (1999) Functional Analysis of Upstream Regulating Regions from the Yarrowia lipolytica XPR2 Promoter. Microbiology, vol. 145, pp. 75-87.
  12. Madzak, C., C. Gaillardin, J. M. Beckerich (2004) Heterologous Protein Expression and Secretion in the Non-Conventional Yeast Yarrowia lipolytica: a Review. Journal of Biotechnology vol. 109, pp. 63-81.
  13. Madzak, C., B. Treton, S. Blanchin-Rolland (2000) Strong Hybrid Promoters and Integrative Expression/Secretion for Quasi-Constitutive Expression of the Heterogeneous Proteins in the Yeast Yarrowia lipolytica. Journal of Molecular Microbiology Biotechnology, vol. 2, pp. 207-216.
  14. Mumberg, D., R. Muller, M. Funk (1994) Regulatable Promoters of Saccharomyces cerevisiae: Comparison of Transcriptional Activity and their Use for Heterologous Expression. Nucleic Acids Research, vol. 22, NO. 25, 5767-5768.
  15. Sumita, T., T. Iida, S. Yamagami, H. Horiuchi , M. Takagi, A. Ohta (2002) YIALK1 Encoding the Cytochrome P450 ALK1 in Yarrowia lipolytica is Transcriptionally Induced by the n-Alkane through Two Distinct cis-Elements on its Promoter. Biochemical and Biophysical Research Communications, vol. 294, pp. 1071-1078.
  16. Yamagami, S., T. Iida, Y. Nagata, A. Ohta, M. Takagi (2001) Isolation and Characterization of Acetoacetyl-CoA Thiolase Gene Essential for n-Decane Assimilation in Yeast Yarrowia lipolytica. Biochemical and Biophysical Research Communications vol. 282, pp. 832-838.
  17. Yamagami, S., D. Morioka, R. Fukuda, A. Ohta (2004) A Basic Helix-Loop-Helix Transcription Factor Essential for Cytochrome P450 Induction in Response to Alkanes in Yeast Yarrowia lipolytica. Journal of Biol. Chem. vol. 279, pp. 22183-22189.