Team:BNU-China/modeling.html
From 2014.igem.org
Abstract
The dynamic analysis of the E.coli’s chemotaxis and the effectiveness estimation of the Prometheus are hard to do in experiments. It requires a high accuracy to finish. A virtual Peanut-Root-and-E.coli system was built in computer (by c++ and OpenGL) to quantify the process that “Prometheus”, our engineered bacteria, carrying Mo as a poter move towards peanut roots. We at last estimate the best “memory” time (See here) of Prometheus and its effectiveness (as shown below). The code (in c++) of the project is available all here.
Our model requires the acknowledge to the mechanism of E.coli’s motivation and chemotaxis and the distribution of the peanut root and its [分泌物]. We then put both into code to make a complete system to [进行我们想要的分析]. A [思路] to introduce or work is shown below. You can [分别了解] them by click the icons.
E.coli model
Mechanism
Escherichia coli’s movement is divided into two parts: “running” for straight line movement, and “tumbling” for reorientation (See [1] ). In a uniform environment, E.coli’s motivation can be describe as “random walk” (See [4]) and the running duration fits a normal distribution. In a environment with spatial concentration gradients of chemical attractance,when bacteria sense a higher attractant concentration this time compared to last time (in a positive temporal gradients environment),the average running duration time increases.Otherwise, their duration times keep the same as that in the uniform environment, no matter how high or low the concentration is(See [4]).
Running
The running of E.Coli can be descibed as a straight line. The distribution of running duration time fits a normal curve, with average τrun0 and standard division σrun.
An paper by Brown and Berg (See [4]) suggested that the mean run duration time τ has a functional relationship with the current attractant concentration and the time rate of change of concentration.. The chemical attractant in his experiments is glutamate. From experiment data and analysis, he concluded the relationship (See formula (1),(2)).
KD is the dissociation constant of the complex formed by glutamate and its receptor. Pb is the fractional amount of receptor (protein) bound with the attractance (See [4]).
The mean velocity during a run, however, is constant while the duration time grow bigger. It keeps the value that in a uniform environment (See [5,6])
Obtain KD
Brown and Berg found the curve KDC/(KD + C)2 fits the points of sensitivity assays for taxis toward glutamate well. (See a picture from their paper below)
Fig. 2
The dissociation constants KD of coplexes in our project is no way to obtain by experiment. However, similar results (points) (See our experiment) were got and we tried to make the constant by fitting it well. The result of Least Square Straight-Line Fit of the data from McfR-Succinate shows the KD of Succinate-Receptor bound is 3.5mM with the formula.
Fig. the result from experiment.
Fig. The result fitted by a( KDC / (KD + C)2) + d where a = 389 and d = 260 . This work is made by c++ and OpenGL. The code to get KD and a and to make sketch is here.
Thus the value of τrun can be calculate now iff there is a concrete constant number of α in function (1). This one was made by a huge amount of experiments in [4]. We lend his number to fit here* with α = 660 seconds.
Tumbling
E. coli reorient between two runs.
Fig.3 A schematic drawing of a tumble, from [2], page 45
The angle dθ is not random strictly (See [1], [5], [6]), and the angle distribution is shown in Fig.4. However, the distribution of the angle is not formularily clear and the process to build a random number fit this distribution should take too much time, so we roughly regard it as a random process.
Fig.4 the distribution of change in direction ( A figure from [1] ).
The statement of the model
The E.coli model is base on the following statements (it will be shown in two parts).
In runs
- The velocity during a run is constant (always equal to the mean)
- E.coli moves straightly during a run
- An E.coli’s running duration time trun is got by a random number fit N(<τrun>,σrun)
- The mean duration time <τrun> fit formula (1) and (2)
- The specific duration_time of a single bacterium changes in the same pace with the changes of the statistical distribution’s mean (relying on C and dC/dt). ( See Fig. 2)
Fig. 2 For a single bacteria, its surrounding environment decides the statistical distribution of its own run duration time. The change of a real duration time is equal to the change of the statistical distribution’s mean change. ( The variance doesn’t change. See above or [])
That can be described in a equation
where trun2 is the specified duration time that a bacteria should run for (a timer records the time has passed), and the trun1 is the one at the last second.
τrun2 is the mean duration time now which is calculate from the function (1) and (2) on the value of C and dC/dt at this moment; τrun1 is the mean duration time at last second which is calculated from the value C and dC/dt at the last second.
NOTE
The statement is made to calculate the process more easily. We suppose it is the run duration time, not the difference of velocity, is the main variant of the whole chemotaxis system.
In tumbles
- E. coli ’s positions do not change as they are tumbling;
- the direction after reorientation is randomly chosen.
Coefficients
- Velocity = 100μm
- run duration time mean in uniform environment = 1.3
- run duration standard division = 3
- mean tumble duration time = 0.14 sec
- alpha (See equation (1)) = 660 sec
- KD = 3500 (μmol/L)
Root model
Virtual Root made by Laser scanning
We use laser scanner to get the root surface points position and their topological information. The scanner is offered by the College of Information Science and Technology of Beijing Normal University. The scanner 型号。
We gain 142735 vertexes and 253404 faces from it. The result can be seen in Fig.
Fig. The virtual peanut from the scanning
Build a concentration gradient
The concentration gradient of the root’s secreta can be regarded as stable in the soil. The concentration decrease as it go farther from the root surface ( A sketch is below, see Fig. ).
Fig. A sketch of the root and its secreta’s concentration gradient shown in different colors. The green points are E.coli imagined run up the gradient towards the root.
The concentration value of the layers are estimate from [8]. We found no paper talks directly on the spatial distribution of peanut’s root exudates, but it shows that the spatial distribution could be described by the equation Y = A1 * X-B, where Y is the C14 activity representing the amount of exudates at the distance X from the root surface. ( An example is shown in Fig. from [8].) Thus, we imagine that the spacial distribution attractance (Succinate) exudated by peanut fit the equation above similar with maize and wheat.
Fig. This figure from [8] is to show the fir results of maize and wheat ( the y axis represent the percentage(%) of C14 activity. The curves seem good to fit the points with x >= 1 mm, but it absolutely can’t be used to get a percentage if 0<= x <1. Thus we just estimate that from 0 to 1 mm, the percentage decrease linearly, and the value is 70% in x = 1 mm to a peanut root.
Thus, the function of the concentration C on the distance to the root surface x is
C = 100 - 0.3 * x if x < 100 and
C = 70 * x^(-1.2) if x > 100.
NOTE:
The number is estimated by calculate the order of magnitudes from the total mass of Succinate a peanut root contains.
Use k-d tree to store these points
We make the concentration of the point in concentration gradient nearest to the bacteria be the value of concentration in the bacteria’s position.
To find a nearest concentration point to a bacteria from about one million will be a big jog. We implement k-d tree ( k-dimension tree, a useful and smart data structure to store information of points in k-dimension space; it is very fast, typically requiring O(logN) time, to find the nearest point with a given position) to store all the 100 thousand points of concentration and find the nearest to the given bacteria. The knowledge of k-dtree is learned from the course algorithms developed by R. Sedgewick And K. Wayne in Coursera.org and [7].
Programming structure
The attractance is specified to be Succinate here.
The program running in computer simulate the movement per second as the following pseudo-code.
move (a bunch of E.coli , the concentration gradient)
each E.coli has [state, timer, position, direction, duration_time]
*The points of concentration gradient are stored in a 3-d tree It will expounded clearly in the part below.
** The mean value is calculate by the formula(1), (2) and (4).
*** This step is by calculating duration_time (this moment) - timer, and if the result > 0, then it should go on this behavior.
Usage of the model
Part One: estimation
e implement this model to estimate the best time interval to kill the engineered E.coli at large in soil.
After run it by computer , we get that it is best to ....
Two
We tried to estimate the effectiveness of the whole system.
From the runs of the program several times, we can clearly compare with the difference.
Compared with the imaginary situation that E.coli are not attracted by anything of the root, the effectiveness of
Results and analysis
Review and forecast
Prev Page Next Page
The Story of E.coli Prometheus
BNU-China