Team:HIT-Harbin/Design

From 2014.igem.org

Revision as of 14:23, 15 October 2014 by Eric YAO (Talk | contribs)

Design

DIOXIN DETECTIVE

DIOXIN SENSOR

AhR RECEPTOR

We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization. In the absence of ligand, AhR is present in the cytosol in a complex with Hsp90, XAP2 and p23 proteins. Upon binding to a ligand, the AhR complex translocates into the nucleus and the AhR dissociates from Hsp90 complex to form a heterodimer with its partner molecule, Arnt. Thus, the formed AhR/Arnt heterodimer recognizes an enhancer DNA element designated xenobiotic responsive element (XRE) sequence located in the promoter region of CYP1A1gene, resulting in the enhanced expression of the gene[1].

Reference:[1] Functional role of AhR in the expression of toxic effects by TCDD

lexA DBD/Mdr

We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization.

MEMORY SYSTEM

Here we add a rational design of cellular memory in yeast that employs autoregulatory transcriptional positive feedback .We combined yellow fluorescent protein induced by dioxins mentioned above together with DNA binding auxiliary sequence of lexAop and mdr521-805. Through the transformation of this genetic sequence, our device can express the yellow fluorescent protein massively and rapidly if the result of dioxin moleculesd detection is positive. In addition, as a result of the positive feedback effect, after the dioxin is removed, the device can still express the yellow fluorescent protein steadily, achieving the function of signal enhancement and memorization.

DIOXIN DEGRADEE
DIOXIN CONCENTRATION
Learn More

Click here and get more details about our project.