Over View
How To Use
Modelling
Detail
\[ \zeta(s) = \sum_{n=1}^\infty\frac{1}{n^s} \]
\[ \sigma_1 = \left(
\matrix{ 0 & 1 \cr
1 & 0 } \right),
\sigma_2 = \left(
\matrix{ 0 & -i \cr
i & 0 } \right),
\sigma_3 = \left(
\matrix{ 1 & 0 \cr
0 & -1} \right)
は,以下の式を満たす.
\left[ \frac{\sigma_i}{2}~,~\frac{\sigma_j}{2} \right] = i\varepsilon_{ijk} \frac{\sigma_k}{2} \]
\[ \]
\begin{cases}
\dot{X}=a_X-k_{bind}XY+k_{bind}Z-b_XX & \\
\dot{Y}=a_Y-k_{bind}XY+k_{bind}Z-b_YY & \\
\dot{Z}=k_{bind}XY-k_{bind}Z-b_ZZ &
\end{cases}