Team:TU Delft-Leiden/Human Practices/landmines

From 2014.igem.org

Revision as of 16:28, 4 October 2014 by Anamaria (Talk | contribs)


Case study: Detecting Landmines using ELECTRACE

The proof of principle for our microbial-based system represents landmines detection. In this section we will provide the main arguments why this application was chosen, by looking at the current problems caused by landmines worldwide. In addition various ethical considerations arising by using ELECTRACE as a system to detect landmines will be discussed and considered


Global problem -Landmines

Land mines pollution and unwanted explosions represents a major problem nowadays, when several countries are heavily contaminated. In 1996, more than 15000 people are killed or maimed by landmines each year [1] mostly on the developing countries [2]. A more recent study, from 2012, indicates total number of 3628 mine/ERW casualties. Although the number decreased over the last six years, this is still indicates an alarming number of over ten casualties per day. Furthermore, at least 1066 people were killed and 2552 people were injured; for 10 casualties it was not known if they survived the incident. Yet, the true number of casualties is likely to be significantly higher, because in many areas, a lot of casualties go unrecorded [4].

Due to the nature of the modern conflicts, the number of civilian casualties caused by mines has heavily increased. As a comparison, during the World War I, 15 % of all fatalities were civilians, and this number increased to 65% in the World War II, including the Holocaust. Nowadays, more than 78% that are injured in hostilities are civilians [1]. A substantial amount (47%) of the casualties in 2012 were children [4]. Currently, all over the world there are ten countries with very heavy contamination (>100 〖km〗^2), including: Chile, Columbia, Iran, Iraq, Turkey and Thailand [3]. More than 350 models of landmines are currently available, not only to official armies, but to all fighting groups.

This scenario is even more dramatic, given the fact that landmines do not differentiate between the foot of a combatant from that of a playing child. They are “weapon of mass destruction in slow motion” that goes beyond any peace agreements. Mines placed during a conflict can still kill or injure civilians decades later. Next to that, after a conflict, areas remain contaminated with explosive remnants of war (ERW). These are explosive weapons that somehow failed to detonate and are left behind. They pose dangers similar to landmines. An example of the impact of old landmines and ERW is Vietnam. Although the Vietnam War is already over for decades, Vietnam is still suffering from the large-scale use of landmines during that conflict. In the period 1999-2012, landmines caused 1683 casualties, of which 630 were killed [4]. Another example of this problem can be found in the Balkans. Serbia, and Bosnia and Herzegovina recently (May 2014) suffered major flooding. Due to landslides caused by this flood, landmines from the Bosnian War (1992-1995) resurfaced and dislodged, adding to the dangers of people living in the areas as well as rescuers [5][6].

Even the purpose of using mines has changed. Sometimes they are laid to deprive a location population access to water sources, wood and fuel. New antipersonnel landmines have been laid in recent years in Yemen (a State Party of the Mine Ban Treaty), apparently by government forces. There are also allegations that State Parties South Sudan, Sudan and Turkey have used antipersonnel mines. From the countries who have not signed the treaty, the governments of Syria and Myanmar have made use of landmines in 2012 and 2013. Mines are also placed by non-state armed groups (rebel armies, terrorists) in Afghanistan, Colombia, Myanmar, Pakistan, Syria, Thailand, Tunisia, and Yemen. In this case, the used devices are usually not “real” landmines, but victim-activated improvised explosive devices [4]. Within mine affected communities, the highest level of danger is faced by the “base of pyramid” people (people from developing countries, that live with 2$ or less/day). They need to ramble widely in search for fresh water, fuel and wood, increasing the danger of entering unmarked minefields [2].

Although several world-wide organizations are trying to change the perception towards landmines, and to diminish the negative effects caused by it, the problem still persists. The number of un-exploded bombs around the globe is unknown. This leads to an opportunity to find a solution a more efficient manner -ELECTRACE.


Using ELECTRACE to detect landmines -ethical considerations

The history of synthetic biology goes back in 1979 when the Nobel Prize winning chemist Har Hobinh synthesized a 207 base-pair DNA sequence. Since then, the field has evolved quickly [7] allowing the development of various applications that can improve the quality of our lives and solve real-world problems, as ELECTRACE. Yet, in order to bring the applications of synthetic biology outside the lab, this umbrella term –synthetic biology needs to be accepted by the mass population. In the following part, the main concerns raised against synthetic biology will be discussed along with our proposed ways to mitigate them, focusing on the biosensors as a way to detect landmines.

Nowadays, the importance of monitoring different parameters in fields such as environment has become of at its utmost importance. Although the technology evolved quickly and various kinds of sensors are commercially available, there is still room for innovative ways to detect -such as the biosensor device –ELECTRACE. Using this biosensor that gives an electrical read-out, several areas can be screen for landmines in more cost-effective, efficient and fast manner. Using this device, synthetic biology can impact people’s lives all over the world, offering a safer environment and serving also to the base of pyramid people, overcoming the social injustice problem. ELECTRACE has a multi-dimensional impact on the world. While, the benefits are easily to identify, our iGEM team, as the product owner and main developer of this device, took in consideration also the possible negative implications posed by using ELECTRACE to detect land mines, even from the developing stages. These issues will be further address.

One main concern that may arise against using this device includes the general arguments against synthetic biology and is related to biohackers. Put differently, is the danger that the tools that are generated in the lab will fall into the wrong hands. In this case, if ELECTRACE is a device that can be bought without any restrictions, bombs can be easily tested by their manufactures. The can work on improving their quality and even making them undetectable. This will generate undesirable outcomes that will make the current methods used for screening landmines less efficient.

To mitigate this, strict practices and policies need to be developed for commercializing ELECTRACE. A first step was done by our iGEM team, by discussing with different stakeholders that are active in combating the negative effects of landmines. Next, the governmental agencies play a pivotal role in designing suitable policies that allow safe and ethic commercialization of ELECTRACE. Our team envision this device, serving as a landmines detection application, to be sold only to anti-mining organizations, and by any means should not be available on any retail store. This will reduce greatly the risks of biohakers. Another concern is related to the safety, more specially the danger that synthetically generated organisms will escape from the lab into the environment and the effect on the earth’s ecosystem [8]. All these concerns can be mitigate by ensuring Safety is an element of pivotal importance, not only during the developing phase, where standard measure and procedures are strictly followed, but also for the end product. A key element to mention here is that all the organisms used for the device does not pose any risks to humans or the environment. The is one of the reasons, why the team decided to realize the device using the well known bacterium E. coli. As an additional safety mechanisms, this bacteria is grown in an LD medium. Once the bacteria is out of our device the survival chances are minimum.

To conclude, our iGEM team aimed to develop a microbial based sensor, capable of detecting landmines in a responsible way. We considered transparency as playing an important role. Thus, from then designing stage, different stakeholders that are currently working in these area were involved. This measure is necessary to ensure that all the implications of developing such a device are taken into account. On the other side, responsible innovation goes beyond focusing on the process, but is also focused on the end-product. With this in mine, using landmines as a proof of principle for ELECTRACE , makes it a device that reflects deep values, including human safety, sustainability, justice and integrity.

References

[1] Gino, S. (1996). The Horror of Landmines. Scientific American

[2] Michael, C., John, G., & John, T. (2007). The Value of Statistical Life and the Economics of Landmine Clearance in Developing Countries. World Development, 512-531

[3] he-monitor. (n.d.). Contamination. Retrieved from the-monitor.org: http://www.the-monitor.org/index.php/publications/display?url=lm/2013/maps/minecontamination.html

[4]International Campaign to Ban Landmines – Cluster Munition Coalition. “Landmine Monitor 2013” November 2013 ICBL. Retrieved on 14 July 2014. http://www.the-monitor.org/index.php/publications/display?url=lm/2013/

[5]Holly Yan, Kisa Mlela Santiago. “Epic flooding in Balkans raises fears about landmines surfacing” 20 May 2014. CNN Retrieved on 14 July 2014 http://edition.cnn.com/2014/05/19/world/europe/balkans-flooding/

[6] “Balkan floods – rebuilding lives one month later” 16 June 2014. British Red Cross. Retrieved on 14 July 2014 http://www.redcross.org.uk/About-us/News/2014/June/Balkan-floods-rebuilding-lives-one-month-later

[7] James, A., Natalja, S., Guy-Bart, S., Thomas, D., Julian, S., & Mauricio, B. (2012). Engineering and ethical perspectives . science & society , 584-590.

[8] Synthetic Biology: playing God or just plain odd? Part 2. (2013, July 26). Retrieved August 10, 2014, from allinthegenes.wordpress.com: http://allinthegenes.wordpress.com/2013/07/26/synthetic-biology-playing-god-or-just-plain-odd-part-2/

Top
facebook twitter