Team:TU Delft-Leiden/Human Practices/landmines
From 2014.igem.org
Case study: Detecting Landmines using ELECTRACE
The proof of principle for our microbial-based system represents landmines detection. In this section we will provide the main arguments why this application was chosen, by looking at the current problems caused by landmines worldwide. In addition various ethical considerations arising by using ELECTRACE as a system to detect landmines will be discussed and considered
Global problem -Landmines
Land mines pollution and unwanted explosions represents a major problem nowadays, when several countries are heavily contaminated. In 1996, more than 15000 people are killed or maimed by landmines each year [1] mostly on the developing countries [2]. A more recent study, from 2012, indicates total number of 3628 mine/ERW casualties. Although the number decreased over the last six years, this is still indicates an alarming number of over ten casualties per day. Furthermore, at least 1066 people were killed and 2552 people were injured; for 10 casualties it was not known if they survived the incident. Yet, the true number of casualties is likely to be significantly higher, because in many areas, a lot of casualties go unrecorded [4].
Due to the nature of the modern conflicts, the number of civilian casualties caused by mines has heavily increased. As a comparison, during the World War I, 15 % of all fatalities were civilians, and this number increased to 65% in the World War II, including the Holocaust. Nowadays, more than 78% that are injured in hostilities are civilians [1]. A substantial amount (47%) of the casualties in 2012 were children [4]. Currently, all over the world there are ten countries with very heavy contamination (>100 〖km〗^2), including: Chile, Columbia, Iran, Iraq, Turkey and Thailand [3]. More than 350 models of landmines are currently available, not only to official armies, but to all fighting groups.
This scenario is even more dramatic, given the fact that landmines do not differentiate between the foot of a combatant from that of a playing child. They are “weapon of mass destruction in slow motion” that goes beyond any peace agreements. Mines placed during a conflict can still kill or injure civilians decades later. Next to that, after a conflict, areas remain contaminated with explosive remnants of war (ERW). These are explosive weapons that somehow failed to detonate and are left behind. They pose dangers similar to landmines. An example of the impact of old landmines and ERW is Vietnam. Although the Vietnam War is already over for decades, Vietnam is still suffering from the large-scale use of landmines during that conflict. In the period 1999-2012, landmines caused 1683 casualties, of which 630 were killed [4]. Another example of this problem can be found in the Balkans. Serbia, and Bosnia and Herzegovina recently (May 2014) suffered major flooding. Due to landslides caused by this flood, landmines from the Bosnian War (1992-1995) resurfaced and dislodged, adding to the dangers of people living in the areas as well as rescuers [5][6].
Even the purpose of using mines has changed. Sometimes they are laid to deprive a location population access to water sources, wood and fuel. New antipersonnel landmines have been laid in recent years in Yemen (a State Party of the Mine Ban Treaty), apparently by government forces. There are also allegations that State Parties South Sudan, Sudan and Turkey have used antipersonnel mines. From the countries who have not signed the treaty, the governments of Syria and Myanmar have made use of landmines in 2012 and 2013. Mines are also placed by non-state armed groups (rebel armies, terrorists) in Afghanistan, Colombia, Myanmar, Pakistan, Syria, Thailand, Tunisia, and Yemen. In this case, the used devices are usually not “real” landmines, but victim-activated improvised explosive devices [4]. Within mine affected communities, the highest level of danger is faced by the “base of pyramid” people (people from developing countries, that live with 2$ or less/day). They need to ramble widely in search for fresh water, fuel and wood, increasing the danger of entering unmarked minefields [2].
Although several world-wide organizations are trying to change the perception towards landmines, and to diminish the negative effects caused by it, the problem still persists. The number of un-exploded bombs around the globe is unknown. This leads to an opportunity to find a solution a more efficient manner -ELECTRACE.
References
[1] Gino, S. (1996). The Horror of Landmines. Scientific American
[2] Michael, C., John, G., & John, T. (2007). The Value of Statistical Life and the Economics of Landmine Clearance in Developing Countries. World Development, 512-531
[3] he-monitor. (n.d.). Contamination. Retrieved from the-monitor.org: http://www.the-monitor.org/index.php/publications/display?url=lm/2013/maps/minecontamination.html
[4]International Campaign to Ban Landmines – Cluster Munition Coalition. “Landmine Monitor 2013” November 2013 ICBL. Retrieved on 14 July 2014. http://www.the-monitor.org/index.php/publications/display?url=lm/2013/
[5]Holly Yan, Kisa Mlela Santiago. “Epic flooding in Balkans raises fears about landmines surfacing” 20 May 2014. CNN Retrieved on 14 July 2014 http://edition.cnn.com/2014/05/19/world/europe/balkans-flooding/
[6] “Balkan floods – rebuilding lives one month later” 16 June 2014. British Red Cross. Retrieved on 14 July 2014 http://www.redcross.org.uk/About-us/News/2014/June/Balkan-floods-rebuilding-lives-one-month-later