The Three-Channel Switch
Introduction
We engineered a three-channel switch that can be controlled with the intensity of blue light. By utilizing the mechanisms of lambda (λ) repressor and linking it to a blue light sensor protein, we would be able to swiftly switch between the expressions of three different genes. This mechanism could provide a nearly real-time control over the chosen genes, which could advance a variety of industrial bioprocesses, speed up research projects and benefit metabolic engineering. The switch has a modular structure, and thus, the users can decide the genes themselves without needing to modify the actual mechanism at all.
Features
We chose YF1 fusion protein as the light receptor protein. The receptor autophosphorylates in darkness but in blue light, it is unphosphorylated. A phosphorylated YF1 protein acts as a kinase and activates FixJ transcription factor, which can then bind to a FixK2 binding site and activate the production of λ repressor protein CI. The kinase activity of YF1 is inversely proportional to blue light intensity and the effect is carried on to the acitve FixJ concentration. Thus, CI protein is not produced in bright blue light but the production increases when the blue light is dimmed down.
We used lambda repressor protein CI to regulate the genes in the switch. Only gene A is active when there is no repressor protein CI. At medium concentrations of CI, gene A becomes deactivated and gene B is activated. At high concentrations of CI, only gene C is active. The activity and deactivity of the gene C is based on tetracycline repressor protein that is produced with genes A and B. When neither of those genes are active, gene C is activated. The activities of genes A and B are controlled with an interesting mechanism of lambda repressor, which is explained thoroughly under the background title on this page.
So, to put it all together, in blue light the switch activates gene A, in dim blue light gene B, and in darkness gene C. The image illustrates this functionality.
In blue light the switch activates gene A, in dim blue light gene B, and in darkness gene C. The changes are based on differences in the concentration of the λ repressor protein CI.
Glossary
- YF1 fusion protein = blue-light sensor that becomes unphosphorylated in blue light and phosphorylated (activated) in darkness
- FixJ protein = after being phosphorylated by YF1, this activates promoter FixK2
- FixK2 binding site = activates the production of CI when FixJ binds to it
- lambda (λ) repressor protein CI = a protein that can repress and/or activate the transcription of two different genes
- OR tripartite operator site = an operator site to which CI binds, downstream from OL in λ phage
- OL tripartite operator site = and operator site to which CI binds, upstream from OR in λ phage
- PRM promoter = a promoter that is active only when there’s no CI protein
- PR promoter = a promoter that is active only when there’s little CI protein, too much or too little inhibit the production
- genes A-C = the three genes that you could insert to our system and they would be expressed as explained here
- Tetracycline repressor protein TetR = can bind to TetR repressible promoter sites and inhibit gene transcription