Team:BYU Provo/Notebook/Metabolism/febapr

From 2014.igem.org

Revision as of 21:18, 18 July 2014 by BriKeele (Talk | contribs)


BYU 2014 Notebook

Edit February April

Home Team Official Team Profile Project Parts Modeling Notebook Safety Attributions

Week of March 22nd

March 17, 2014

Researched articles on the effects of heavy metals on waste water treatment plants and the effects of heavy metals on bacteria to prepare for our presentation on N.multiformis metabolism optimization. Searched for common bacteria with heavy metal resistance genes that could be possibly insert into our bacterial chassis; finding sequences and reading about success rates in data of those that had been transferred.

March 20, 2014

Searched for the most commonly prescribed antibiotics in the United States. Top prescribed antibiotics include penicillins and macrolides according to the New England Journal of Medicine (2013) [http://www.nejm.org/doi/full/10.1056/NEJMc1212055#t=article]

March 21, 2014

Searched articles on the effectiveness of macrolide and beta-lactam degradation enzymes. Researched bacteria with a known gene sequences to degrade both types of antibiotics.

Week of March 29th, 2014

March 24, 2014

Investigated macrolide antibiotic degradation, settling on the ethryomycin esterase as the enzyme. Found part BBa_K1159000 in the IGEM registry which contains the Erythromycin Esterase Type II (EreB) gene that degrades macrolides.

March 28, 2014

Used the Anderson Promoter Collection to determine which promoters have the highest rate of expression. Antibiotic degradation genes would need medium to strong expression to be useful to the bacteria

Week of April 5th

April 1, 2014

Contacted the 2013 Technical University of Munich IGEM team to inquire about the EreB plasmid since because the registry said that it was not available. Received a response that the part would be available for 2014. Also contacted IGEM to request the part in the 2014 plate.

April 3, 2014

Researched scholarly articles about denitrifying genes to determine which particular enzymes are the most important. The paper describes several experiments with these enzymes in soil denitrifiers, the genes required to denitrify, and the importance of each gene present in soil bacteria. [http://link.springer.com/article/10.1007%2Fs00248-011-9909-5/fulltext.html]

April 4, 2014

Checked denitrifying genes for internal restriction enzyme sequences.

Week of April 12th, 2014

April 7, 2014

Prepared primer sequences to perform mutagenesis to exchange nucleotides and change the restriction site within the gene. Primers were designed for the denitrification norB gene that contained the IGEM plasmid restriction site EcoR1. Those primers were:

  • 5’-CCGACCACGTACTGAAGGCCCATGATC-3’
  • 5’-GATCATGGGCCTTCTGTACGTGGTCGG-3’
  • 5’-TGCAGCCAGTCCTGTAGCACCCCG-3’
  • 5’-CGGGGTGCTACAGGTCTGGCTGCA-3’

April 9, 2014

Finished the circuit write up for macrolide degradation and outlined a protocol to test the function of the gene. Following the write-up, we transformed the IGEM constitutive promoter BBaJ23109 to test its functionality in competent E.coli.

April 11, 2014

Performed plasmid preps with the transformed bacteria according to the common protocol.