Why Alpha System Should Work – a deterministic model of alpha system
When modelling our system, we began with the simplest method known – deterministic rate equations. Moreover, from the design it was clear that the most important benchmark for the signal within the system would be the concentration of AHL as a function of time, so we began by modelling this part of our system. It took only a simple derivation (see [1]) to obtain these equations which characterize this part of the system:
(For a glossary see [1]).
We began to analyze this system by attempting to simplify it, by assuming a steady state solution wherever possible. Using this method (see [2]) we managed to obtain this equation:
It is clear from the goals of our system, that we want to have some sort of bi-stability in the result, when Gate I is small (see [2]). The answer to whether this condition is met, would obviously depend on the constants of the system for which we could not find a reliable source, but using a simple geometric analysis of the phase space (see [3]), we were able to produce a graph showing for which values of (v_A,v_B) we could configure the system (by changing the IPTG concentration and the OD) to show bi-stability:
Why Alpha System Should Fail – a stochastic model of alpha system
The above model assumes a low-noise system (as do all rate equation models), but especially when constructing a bi-stable network, it is important to consider the noise. To do this we need to create a stochastic model, which in our case, we based upon the commonly used Fokker Planck equation. Using the derivation found in [4] (book on stochastic models from Roee), we produced the Fokker Planck variant of the equation for the AHL concentration derived in *(link to “Why Alpha System Should Work”)*
After analyzing this equation as explained in [5], we produced the following results (using a point on the (v_A,v_B) plane which the previous analysis showed would be bi-stable)