Team:Imperial/Water Filtration
From 2014.igem.org
Water Filtration
Overview
By attaching functional proteins to cellulose we can expand it's properties and selectivity capture specific contaminants in water. We used five different cellulose binding domains and fused them to different metal binding proteins, and sfGFP. We performed assays to test the binding of the CBD fusions to our cellulose.
Key Achievements
- Made cellulose binding domains
Introduction
Water is typically purified by passing it through layers of porous materials, each specially selected for its ability to remove specific forms of contamination. All porous materials can filter particles by size, many have extra capabilities thanks to their chemical properties. For example, charcoal - or activated carbon - is a porous component of household and industrial water filters that can also bind large or electron-rich molecules via the van der Waals forces, and catalyse the breakdown of other chemicals such as molecular chlorine. While there are many different types of filters, we can categorise and compare them using their measurable physical and chemical properties. The key physical properties are:
- Pore size - average or maximum size of pores in the material
- Porosity - volume of the filter not occupied by solid material
- Tortuosity - length of paths through the filter compared with a straight line
- Adhesion - the strength of hydrogen bond interactions between the fluid and filter
- Kinetic rate constants - parameters defining how the filter material affects chemical reactions in the fluid