The Rothschild lab hosts student interns at NASA Ames Research Center. As such, we must complete online training courses in chemical hygiene, hearing conservation, HAZCOM 2012, hazardous waste/environmental safety, and personal protective equipment, as well as an instructor-led lab safety practical.
The most important factor in good laboratory practice is personal safety. To that end, we adhered to the use of nitrile gloves for all lab work, as well as safety goggles for any work with irritants, toxic compounds, or liquid nitrogen. In addition, we divided our workspace into separate areas for computer work, bench work (for daily lab procedures), and work in the fume hood (for work with corrosives and organic solvents).
Working with Live Wasps
The public often responded with surprise and occasional gasps whenever we mentioned that we caught our own wasps for our waterproofing project. Wasps have frightening reputations, mostly because they defend themselves with venomous stings – but just like bacteria, some wasps are safer than others. We were fortunate enough to work with the European paper wasp (Polistes dominula), which is a relatively non-aggressive species of paper wasp. We also caught our wasps under the guidance of Dr. Dave Kavanaugh, chairman and curator of entomology at the California Academy of Sciences.
Dr. Kavanaugh's tutelage got us through our wasp wranglin' escapade injury-free and with minimal stress to the wasps. He provided us with butterfly nets, with which it was an easy feat to catch the wasps in mid-air, as they fly rather slowly when near their nests. The wasps are not aggressive unless their nest is disturbed or if they've been trapped in a net. While both of these situations did inevitably occur, we were safe to insert gloved hands into the nets to coax trapped wasps into empty 2mL tubes, as the wasps cannot sting through nitrile gloves. Once in the tubes, we placed the wasps in an insulated container with ice. This calmed them down to a lethargic state, at which point we could proceed with dissections and RNA extraction.
Kyla Ugwu examines a wasp she trapped during our specimen collection expedition at the beginning of summer 2014.
Ben Doughty and Eli Block swing in attempts to catch flying paper wasps in Petaluma, California.
Ben Doughty collecting a live paper wasp inside his bug net.
Our team of wasp trappers celebrates our success with California Academy of Sciences entomologist Dave Kavanaugh.
A macroscopic image of a paper wasp we collected and stored in a tube of RNA Later for preservation.
The Amberless Chassis
In addition to safe laboratory practices, we also examined environmental safety concerns. An end goal of our project would be the flight of our biological drone in nature, and if such a system contained live cells, we would run the risk of the horizontal transfer of our engineered genes to wild organisms, which would be unpredictable and potentially harmful to the ecosystem. To combat this, we are looking at the use of an “amberless” system in which the tRNA of our model organism is modified such that the UAG stop codon – called “amber” – codes instead for leucine. This way, if these genes are transferred to wild-type organisms, they will interpret the UAGs as a stop, and the resulting polypeptide would be truncated and non-functional.
We have discussed this system with Mark Segal at the Environmental Protection Agency, and we are beginning to examine the possibility of regulating the environmental testing of genetically-engineered organisms using an amberless chassis to prevent gene transfer. Stay tuned!
Our lab is unique in that it is located in building 239, the Astrobiology and Life Sciences Research Laboratory, at NASA Ames Research Center. The surface of the building is pockmarked to look like the surface of the moon.
Besides being the home for the Stanford-Brown-Spelman iGEM team, The Astrobiology and Life Sciences Research Laboratories contain the Human Environmental Test Facility and the Advanced Studies Laboratories (ASL), used for research in biomedicine, astrobiology, ecosystem science, Closed Ecological Life-Support Systems (CELSS), Environmental Controls and Life Support Systems (ECLSS), nanotechnology, and Synthetic Biology. The Astrobiology facilities include basic and applied research laboratories in astrochemistry, the cosmic evolution of biogenic elements and molecules, planetary pre-biotic chemistry, geology, the early organization and evolution of life, the evolution of complex organisms, and ecological studies. Some laboratory facilities include instrument development capabilities and analytical equipment for the characterization of gas and aqueous chemistry, instruments for the detection of various biomarkers including sugars and organics, microbiology facilities, including the culture of microbial mat communities and planetary protection testing, electron and RAMAN microscopy facilities, molecular biology capabilities, and bioinformatics computational capabilities. Laboratories in this facility are operated by NASA personnel and the University of California.
Image:Example2_Lab_1.png|The building our lab is in!
Image:Example2_Lab_2.png|The inside of our lab!
Image:Example2_Lab_3.png|Team Member 3 doing an experiment
Image:Example2_Lab_4.png|Working in biosafety cabinets
Image:Example2_Lab_5.png|Team all gloved up and ready for work!
Image:Example2_Lab_6.png|Equipment that we use to do SCIENCE!
Image:Example2_Lab_7.png|We decorated this part of our lab
Image:Example2_Lab_8.png|Whatever else you want