Apart from lack of sunlight in the water and anoxia caused by cyanobacteria itself, the potential detrimental effect of alga secreted toxin should be noticed. One of the most harmful toxin is called microcystin (MC), which has severe hepatotoxicity. The work in this part is to degrade MCs in water environment during an algal bloom.
To accomplish this work, the potent microcystin-degrading enzyme-MlrA, originally from Sphingomonas is utilized. This enzyme can cleavage the ring structure in microcystin, significantly reducing the toxicity of the protein. Since MCs is released into water by algae, secretion for MlrA is also necessary to facilitate the degradation of MCs.
Based on utility of MlrA, we measure the degradation efficiency of the living bacteria, the periplasmic protein and the lysed whole cell production. The results indicate that our engineered bacteria could degrade MC-LR to a certain extent.
Design
MCs are widespread toxic cyclic heptapeptides produced by many species of algae with different variants (Fig. 1). MCs are synthesized by polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) pathway. Among different variants, MC-LR is a widespread and deleterious one.
The most known mechanism of its toxicity is that MCs can inhibit protein phosphatase 1(PP1) and 2A (PP2A) specifically and efficiently.[2] The inhibition can lead to a severe disorder of biochemical reaction and disorganization of cytoskeleton in many eukaryotic cell. Many routine tools of decontamination cannot significantly reduce activities of MCs. Here, we propose a new idea of biodegradation, which could degrade MCs effectively without apparent side effects.
Many bacterial species have been reported to have ability to degrade MCs. Among them, a gene cluster in Sphingomonas has been found and sequenced. The cluster includes four genes, mlrA, mlrB, mlrC and mlrD, which can hydrolyze MCs and facilitate absorption of the products as carbon source. During the degradation process, the first-step linearized product, which is catalyzed by MlrA, shows much weaker hepatoxin compared with MCs. In the experiment of mouse bioassay, up to 250 mg/kg of linearized MC-LR shows no toxicity to mouse, much higher than 50% lethal dose 50mg/kg of cyclic MC-LR. Furthermore, the linearization also raises the median inhibition concentration to 95nM, around 160 times higher than original 0.6nM. [3] (Fig. 2)