Team:Peking/secondtry

From 2014.igem.org

Revision as of 05:07, 15 October 2014 by Success (Talk | contribs)

Harmful algal bloom

Widespread water bloom leads to extensive damage in ecosystems. Compared to physical or chemical methods, biological treatment for water bloom is less expensive and more environmentally friendly. Hence Peking iGEM is dedicated to constructing engineered microorganisms for the elimination of algae and recovery of ecosystems. A specific antimicrobial peptide is secreted to disrupt the outer membrane of algae. In addition, we equip our transgenic cells with features that allow for buoyancy and attachment, making our project more efficient. During this process, an enzyme is also secreted to degrade a deleterious product of algae. After eradicating the algae, our engineered bacteria will commit suicide, and the ecosystem is finally restored. This project is an innovative treatment for water bloom, and has potential applications in the field of ecosystem remediation.

Demo2 first
Peking iGEM Club 1: Promoting iGEM
Peking iGEM Club 2: Promoting iGEM

Killing:
Algal blooms threaten the ecological integrity and sustainability of aquatic ecosystems, they can not only deplete oxygen upon bloom senescence thus being harmful to the phytoplankton, but also produce a variety of toxic secondary metabolites. There are some methods to deal with water bloom, such as physical methods, chemical methods, and biological methods. They each offer their own advantages, but also have their own disadvantages as the following table shows.

Killing Improvements:
Algal blooms threaten the ecological integrity and sustainability of aquatic ecosystems, they can not only deplete oxygen upon bloom senescence thus being harmful to the phytoplankton, but also produce a variety of toxic secondary metabolites. There are some methods to deal with water bloom, such as physical methods, chemical methods, and biological methods. They each offer their own advantages, but also have their own disadvantages as the following table shows.

This year Peking iGEM aims at dealing with the problem of water bloom with the tool of Synthetic Biology, to engineer bacterial that can restore the ecosystem, both reduce the algal biomass and degrade the toxin.

Degradation :
Microcystis aeruginosa is the most common cyanobacteria during algal bloom, and can secrete microcystin, a deadly toxin. To decrease the negative effects of the toxin on water ecosystems, we introduce an engineered bacteria that can secrete a microcystinase-mlrA protein to hydrolyze the toxin.

Suicide :
Algal blooms threaten the ecological integrity and sustainability of aquatic ecosystems, they can not only deplete oxygen upon bloom senescence thus being harmful to the phytoplankton, but also produce a variety of toxic secondary metabolites. There are some methods to deal with water bloom, such as physical methods, chemical methods, and biological methods. They each offer their own advantages, but also have their own disadvantages as the following table shows.

Modeling :
Algal blooms threaten the ecological integrity and sustainability of aquatic ecosystems, they can not only deplete oxygen upon bloom senescence thus being harmful to the phytoplankton, but also produce a variety of toxic secondary metabolites. There are some methods to deal with water bloom, such as physical methods, chemical methods, and biological methods. They each offer their own advantages, but also have their own disadvantages as the following table shows.

Human Practice :
Algal blooms threaten the ecological integrity and sustainability of aquatic ecosystems, they can not only deplete oxygen upon bloom senescence thus being harmful to the phytoplankton, but also produce a variety of toxic secondary metabolites. There are some methods to deal with water bloom, such as physical methods, chemical methods, and biological methods. They each offer their own advantages, but also have their own disadvantages as the following table shows.