Team:ULB-Brussels/Project
From 2014.igem.org
$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\MyColi}{{\small Mighty\hspace{0.12cm}Coli}} \newcommand{\Stabi}{\small Stabi}$ $\newcommand{\EColi}{\small E.coli} \newcommand{\SCere}{\small S.cerevisae}\\[0cm] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \newcommand{\PI}{\small PI}$ $\newcommand{\Igo}{\Large\mathcal{I}} \newcommand{\Tgo}{\Large\mathcal{T}} \newcommand{\Ogo}{\Large\mathcal{O}} ~$
We will mainly use type II TAs in which both components are proteins and the antitoxin binds to the toxin, preventing it from performing its function. Toxin functions and structures in type II TA systems are diversified, allowing us to chose how cells will die when stressed. Two systems will be used to illustrate our project : CcdBA and Kid/Kis. CcdBA and the DNA gyraseCcdB is an inhibitor of the DNA gyrase, an enzyme that supercoils circular DNA such as bacterial chromosomes and plasmids, making it more compact. Subunit A of the DNA gyrase complex must covalently bind to DNA to perform supercoiling. CcdB binds this subunit when bound to DNA, inhibiting its activity, resulting in DNA double strand breaks, activation of emergency signals and possibly death. CcdBA is the most studied and characterized TA system. .The ULB-Brussels team aims to work out a system which fights against the appearance of less or none productive microbial sub-populations in bioreactors by repressing : Our focus will be on E.Coli and S.Cerevisiae. We will maintain the target gene in cells by a mechanism wildly used by the plasmids themselves [4]. Plasmids are closed collections of DNA sequences often find in bacteria and added to the bacterial chromosome. There are actually broad elements for the cell, like virus and transposons, and they have their own existence. They aim to be maximally amplified. They so carry on the exact inverse strategy of the virus: they bring genes that are not essential for the survival of the micro-organism but that give clear evolutionary advantages such as gene of resistance to antibiotics. Despite the metabolic overhead that they represent, the cell can thus have interest to let them breed and to keep them. However some plasmids are greedy and they want to pull the evolutionary phenomenon to their own advantage. When the cell is split, it is important that the plasmid an its copies are present in the both daughter cells but the replication of the plasmids is independent of that of the bacterial chromosome and can't thus use the microtubules. Some plasmids bear genes for a toxin and its antitoxin, the antitoxin being less stable than the toxin, so that the daughter cell which doesn’t inherit at least one copy of the plasmid is sentenced to death: the cell won’t be able to renew its supply of toxin and antitoxin whereas the inherited antitoxin will be quickly degraded, freeing the action of the inherited toxin. That is how some plasmids manipulate the laws of the natural selection… The fact is that the plasmids are the privileged transforming vectors for bacteria and the yeasts. It is rather easy to insert the target gene on a plasmid and then integrate it inside the micro-organisms. To be ensured that the plasmid, and then the target gene, is maintained into the microbial strains, we could transfer the toxin-antitoxin strategy wildly adopted by numerous plasmids into the process. Moreover we suggest the coupling of the production of the target protein to that of the antitoxin while the toxin is produced independently. So the cells that would have turned off the target gene and thus the antitoxin gene will die. We will actually build what is called a bicistronic gene: the target protein and the antitoxin are set on the same order form (mRNA) for the protein factory (ribosome). A special DNA sequence has to be put between these two genes if one wants that the ribosome produce two distinct proteins with only one mRNA. We will use the gene of the 2A peptide (18 aa.), in both the yeast (S.Cerevisiae) and bacteria model (E.Coli). There is nowadays few literature about the use of 2A peptide in prokaryotes and an important part of our work will aim to improve our knowledge. This peptide is a trick used by some virus to condensate their genome. When the ribosome translates the last amino acid of the 2A peptide, the nascent polypeptide chain is trapped because of steric obstruction inside the ribosomal complex. The translation is momentarily paused. The congestion can be relieved by the hydrolysis of the ester link between the tRNA (linked to the mRNA into the P site of the ribosome) and the last amino acid, which allows the release of the nascent chain, formed by the first target protein in fusion with the 2A peptide. If the second target protein begins by a prolyl residue, the translation can restart. A great advantage of the use of the 2A peptide, unlike other methods, is that allows carrying on a mighty quality control: the antitoxin will be produced only and only if the upstream protein is correctly translated (or punctually muted, which is very rare). Any premature stop codon or “frame-shift” will be detected. At last, the group of stressed cells because of aging or starvation would be repressed thanks to the exploitation of another wild function of the toxin-antitoxin systems. They are also responsible for the sacrifice of part of the population during an important stress in order to maximize the survival of the remaining cells [6]. The system we will tune will be rather low sensitive so that the micro-organisms won’t be killed for any stress that is inherent to the process (change in the set points, sub-optimal settings, micro-spatial variations, etc.). The cues we suggest to fight against the appearance of less or none productive sub-populations are universal and would be found in any process using E.Coli and S.Cerevisiae. Here is a great strength of our project: it's a quite simple method that could be easily transferred into many processes! .Bibliography(1) Susann Müller, Hauke Harms & Thomas Bley: Origin and analysis of microbial population heterogeneity in bioprocesses. Current Opinion in Biotechnology 2010, 21: pp. 100–113.(2) J. Watson, A. Gann, T. Baker, M. Levine, S. Bell, R. Losick: Molecular Biology of the Gene – seventh edition. Pearson Education & Cold Spring Harbor Laboratory Spring 2014: pp. 615-732. (3) Sabrina S. Ali, Bin Xia, Jun Liu, William Willey Navarre: Silencing of foreign DNA in bacteria. Current Opinion in Microbiology 2012, 15: Issue 2, pp. 175–181. (4) Finbarr Hayes & Laurence Van Melderen: Toxins-antitoxins: diversity, evolution and function. Critical Reviews in Biochemistry and Molecular Biology 2011: pp. 1-23. (5) Garry A. Luke: Translating 2A Research into Practice. Innovations in Biotechnology 2012, Dr. Eddy C. Agbo (Ed.), ISBN: 978-953-51-0096-6, InTech, Available from: http://www.intechopen.com/books/innovations-inbiotechnology/translating-2a-research-into-practice. (6) L. Gelens, L. Hill, A. Vandervelde, J. Danckaert & R. Loris: A General Model for Toxin-Antitoxin Module Dynamics Can Explain Persister Cell Formation in E. coli. PLoS Comput Biol 2013 9(8): e1003190. doi:10.1371/journal.pcbi.1003190 |
---|