Team:BYU Provo/Notebook/Biofilm/febapr
From 2014.igem.org
BYU 2014 Notebook |
||||||||||||
| ||||||||||||
14 February 2014
We worked on some preliminary research regarding the biofilm aspect of our project idea. A good potential gene to look into is DispersinB which last year's BYU iGem team worked with some, so we can talk to team members from last year regarding that. Below are links for papers worth looking into more. (JB)
http://www.ncbi.nlm.nih.gov/pubmed/23103508
http://www.uniprot.org/citations/12896987
http://www.nlm.nih.gov/medlineplus/ency/article/000679.htm
19 February 2014
Today we read some more on the biofilm being formed in activated sludge processors like the one in Park City, UT. We are searching for different enzymes that could be utilized to break down the biofilm buildup found in these types of places. (JB)
11 March 2014
We emailed BYU's iGem team from last year which had done some work on biofilm degradation with alpha amylase and dispersin B. They gave us some good papers to look into regarding this aspect of our project. Another gene we have been looking into is Aiia, which is a quorum sensing blocker, which would be helpful in preventing aggregation of bacteria into biofilms. (JB)
17 March 2014
Today we went over our respective presentations for our subprojects. We will need to be able to insert our modified plasmid with our biofilm inhibiting genes into the N. multiformis bacteria which will then produce the enzymes and quorum sensing components and will affect the other bacteria forming the biofilms in the ASPs. We will need to look at fitness costs later on down the road and select for the most fit mutants with our biobrick in it. (JB)
19 March 2014
Today we started doing research as to how we will insert our genes of interest into the plasmid. Hopefully our genes will be compatible with the standard iGem E. coli plasmid pSB1C3. We need to find the gene sequences that will be used and design primers with restriction sites on them so that we can amplify the gene and insert it into the plasmid. We will also need to start thinking of experimental methods of how to test the efficacy of the different genes in biofilm dispersal and inhibition. I will be doing the research for alpha amylase.
BYU 2013 iGem team’s alpha amylase part: BBa_K1195001
Uniprot: I6S010 (E. coli alpha amylase)
As E. coli is a gammaproteobacteria and N. multiformis is in the betaproteobacteria class, if there are issues that arise from the E. coli gene being incompatible with the N. multiform is, we will need to consider using the betaproteobacteria Alpha Amylase found on Uniprot (Uniprot:Q47IJ1), but this would require isolating this gene ourselves from a betaproteobacterium. Alpha Amylase requires calcium for activation. We will need to verify its presence in the ASPs. (JB)
21 March 2014
We discussed as a group a game plan for our next presentation. We know that the alpha amylase from E. coli that is in the iGem registry will be compatible with the pSB1C3 plasmid. We will need to discuss further how to link all 3 genes together and we will also need to determine if the genes will need to go on the plasmid in a certain order or if they will need anything additional in order to complete their function. We also discussed some preliminary ideas as to how we will test the efficacy of the biofilm inhibition by our components and also the concern whether or not they will be effective at degrading existing biofilms.
I began designing my primers with restriction sites today for the Alpha Amylase gene that is from the BYU iGem registry. The restriction sites used will also depend on the order of linkage of the other genes that will go in our plasmid. (JB)
24 March 2014
Alpha Amylase: Today I continued to work on designing the primers for Alpha Amylase. They are all done except for the promoter/Shine Dalgarno sequence. Dr. Grose showed us how to search for signaling sequences. (JB)
26 March 2014
Alpha Amylase: Today we finished preparing our presentation that we are giving later today. I finished the primer designs but there were a lot of potential hairpins and self-annealing sites that we will have to take a closer look at. As well, the PstI restriction site is contained with the alpha-amylase so we will not be able to use that restriction enzyme with Alpha Amylase until we remove the site with site-directed mutagenesis. (JB)
27 March 2014
Alpha Amylase: Today I did some research into methods other scientists have employed for measuring biofilm dispersal and degradation. (JB)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932551/pdf/1249-06.pdf
http://download.springer.com/static/pdf/846/art%253A10.1007%252Fs12010-011-9526-2.pdf?auth66=1396038196_95251369f639464eb174e81ed448c024&ext=.pdf
28 March 2014
Alpha Amylase: Today we talked to Dr. Grose about designing our primers. I also looked into oligocalc to see if my primers for a-amylase will be viable. The forward primer is fine, the reverse primer needs more reverse complementary base pairs added to the beginning to increase the melting temperature. Dr. Grose also told us to only use the Xba portion of the prefix to cut down on primer length and only use SpiI so that we can clone a-amylase without the PstI restriction site for initial cloning of the gene (we have to do this because a PstI restriction site is found in the middle of the a-amylase gene). (JB)
31 March 2014
Alpha Amylase: Today we learned about site-directed mutagenesis