Team:ETH Zurich/project/overview/summary

From 2014.igem.org

Revision as of 02:49, 18 October 2014 by Danger (Talk | contribs)


Mosaicoli : from simplicity to complexity with biologic gates

Abstract



Emergence of complex patterns in nature is a fascinating and widely spread phenomenon, which is not fully understood yet. Mosaicoli aims to investigate emergence of complex patterns from a simple rule by engineering a cellular automaton into E. coli bacteria. This automaton comprises a grid of colonies on a 3D-printed millifluidic chip. Each colony is either in an ON or OFF state and updates its state by integrating signals from its neighbors according to a genetically pre-programmed logic rule. Complex patterns such as Sierpinski triangles are visualized by fluorescence after several steps of row-wise propagation. Sequential logic computation based on quorum sensing is challenged by [and crosstalk] present in biological systems. Mosaicoli overcomes these issues by exploiting multichannel orthogonal communication, riboregulators and integrase-based XOR logic gates. Engineering such a reliable system not only enables a better understanding of emergent patterns, but also provides novel building blocks for biological computers.