Team:Oxford/ouridea
From 2014.igem.org
Line 16: | Line 16: | ||
</div> | </div> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
<p> | <p> | ||
Line 58: | Line 48: | ||
--> | --> | ||
+ | |||
+ | |||
+ | |||
+ | <div class="inner"> | ||
+ | <img class="DCMationgif" src="https://static.igem.org/mediawiki/2014/0/0f/Oxigemframeone.png" align="middle" alt="" onclick='javascript:(this.src=="https://static.igem.org/mediawiki/2014/0/0f/Oxigemframeone.png"?this.src="https://static.igem.org/mediawiki/2014/4/4d/Animation.gif":"")' /> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | </html> | ||
+ | |||
+ | |||
+ | |||
+ | <br> | ||
{{:Team:Oxford/templates/footer}} | {{:Team:Oxford/templates/footer}} |
Revision as of 13:37, 22 August 2014
Chlorinated solvents are indispensable to industry, research and household applications. Their accumulation in water supplies and carcinogenic properties present a major environmental and health hazard.
OxiGEM are tackling the issue by developing a bioremediation/detection kit to dispose of the common chlorinated solvent dichloromethane (DCM). Our system design, inspired by the DCM-degradation pathway of M. extorquens DM4, is initiated and refined by the dialogue between modeling simulations and experimental data. Incorporation of novel diffusion-limiting biopolymeric beads to encapsulate engineered bacteria ensures safe and efficient DCM degradation.
We are constructing a synthetic fluorescent biosensor through GFP fusion to the dcmA promoter, regulated by the DCM-binding protein, DcmR, and maximising the sensitivity and catalytic efficiency of the system through directed evolution.
Our DCM clean-up solution, branded ‘DCMation’, will be user-friendly in a wide range of workplaces and extendable to the disposal of many other harmful substrates.