Team:UCSD Software
From 2014.igem.org
Line 12: | Line 12: | ||
<li>constructing and visualizing the network of all synthetic genetic circuits that can interact with one another</li> | <li>constructing and visualizing the network of all synthetic genetic circuits that can interact with one another</li> | ||
<li>devising algorithms to search this network for the set of genetic devices that can be used to construct a complex genetic circuit.</li> | <li>devising algorithms to search this network for the set of genetic devices that can be used to construct a complex genetic circuit.</li> | ||
+ | <li>Perform some basic validation via kinetic modelling.</li> | ||
</ol> | </ol> | ||
<h3>Aim 1 - Building a Database</h3> | <h3>Aim 1 - Building a Database</h3> |
Revision as of 19:23, 15 August 2014
Project Description
Problem Statement
Synthetic genetic circuits created by synthetic biologists have yielded exciting applications such as biofuels production and cancer killing bacteria. These circuits are often difficult to engineer, requiring months to design, build, and test each individual genetic device involved in the circuit. Although there are many genetic devices that have been built, re-using these devices often requires a time-consuming review of the literature. The UCSD Software iGEM team will address this challenge by creating a web-tool that leverages existing genetic devices to create complex genetic circuits. We will accomplish this by:
- building a comprehensive database that captures the behavior, composition, and interactions of existing genetic devices in the literature
- constructing and visualizing the network of all synthetic genetic circuits that can interact with one another
- devising algorithms to search this network for the set of genetic devices that can be used to construct a complex genetic circuit.
- Perform some basic validation via kinetic modelling.
Aim 1 - Building a Database
We will mine the scientific literature for existing genetic devices and then construct a database that captures device characteristics such as:
Aim 2 - Constructing Network of Interacting Devices
We will connect known genetic devices together via device input and outputs to create a network of devices that can interact. We define a genetic device as a DNA construct transformed into cells that can cause expression of some protein in response to stimuli (or input). We will develop a web interface to facilitate access to the complex network that we have constructed. Our Web interface makes extensive use of Cytoscape, an open source bioinformatics software package for metabolic network visualization and simulation. In addition, the interface will generate SBOL Visual Images, a standard language that is easily understood by synthetic biologists all over the world. Users can also update our database with additional devices through this interface. Using the Cynetshare framework, users can share their circuit designs
Aim 3 - Searching the Network
This interface will allow researchers to query our database network for a circuit design expressed as logical operators such as “AND”, “OR”, and “NOR”, and retrieve the subnetwork of genetic devices that satisfies the circuit design. To Perform our search we modified several traditional graph search algorithms to traverse this graph, including but not limited to Prim’s algorithm (minimum spanning tree), Dijkstra’s algorithm and a breadth-first search. Results are visualized graphically in our web interface
WELCOME TO iGEM 2014!Your team has been approved and you are ready to start the iGEM season!
|
||||||||||||
| ||||||||||||
Requirements | ||||||||||||
Please be sure to keep these links, your audience will want to find your: |
There are a few wiki requirements teams must follow:
Visit the Wiki How To page for a complete list of requirements, tips and other useful information. |
|||||||||||
Tips | ||||||||||||
We are currently working on providing teams with some easy to use design templates.
For a full wiki list, you can visit iGEM 2013 web sites and iGEM 2012 web sites lists. |
This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started:
|