Team:TU Darmstadt

From 2014.igem.org

(Difference between revisions)
Line 11: Line 11:
<tr>
<tr>
<td style="border:1px solid black;" colspan="3" align="center" height="150px" bgColor=#FF404B>
<td style="border:1px solid black;" colspan="3" align="center" height="150px" bgColor=#FF404B>
-
<h1 >WELCOME TO iGEM 2014! </h1>
+
<h1>E. Grätzel – Solar BioEnergy</h1>
-
<p>Your team has been approved and you are ready to start the iGEM season!
+
<p>This year the team aims to achieve victory in the championship of synthetic biology by investigating a new approach to produce a plant pigment called Anthocyanin in Escherichia coli (E. coli). This class of pigment not only stains blossoms in blue, violet or red but also is enclosed in fruits and is valued for its antioxidant effect as well as the ability to lower the risks for cancer1.
-
<br>On this page you can document your project, introduce your team members, document your progress <br> and share your iGEM experience with the rest of the world! </p>
+
Conventional Anthocyanin production has three major problems: First, the growth of plants depends on agricultural land needed amongst others to grow crops for food production. Secondly, the extraction process includes toxic and environmentally hazardous chemicals like methanol, acetone and sulfur dioxide. Lastly, the high energy costs of the extraction and purification process is economically inefficient.
 +
In the team’s technological approach, the anthocyanin dye can be utilised to build so-called “Grätzel cells”. These electrochemical dye-sensitized solar cells use the produced dye instead of a semiconductor material for the absorption of light. The objective is to investigate an innovative approach for a sustainable energy source; wherever and whenever needed. In the course of the project phase, the team will construct a Grätzel cell testing their dye that was produced in E. coli.
 +
<br></p>
<br>
<br>
<p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:TU_Darmstadt&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>
<p style="color:#E7E7E7"> <a href="https://2014.igem.org/wiki/index.php?title=Team:TU_Darmstadt&action=edit"style="color:#FFFFFF"> Click here  to edit this page!</a> </p>

Revision as of 16:35, 15 August 2014


E. Grätzel – Solar BioEnergy

This year the team aims to achieve victory in the championship of synthetic biology by investigating a new approach to produce a plant pigment called Anthocyanin in Escherichia coli (E. coli). This class of pigment not only stains blossoms in blue, violet or red but also is enclosed in fruits and is valued for its antioxidant effect as well as the ability to lower the risks for cancer1. Conventional Anthocyanin production has three major problems: First, the growth of plants depends on agricultural land needed amongst others to grow crops for food production. Secondly, the extraction process includes toxic and environmentally hazardous chemicals like methanol, acetone and sulfur dioxide. Lastly, the high energy costs of the extraction and purification process is economically inefficient. In the team’s technological approach, the anthocyanin dye can be utilised to build so-called “Grätzel cells”. These electrochemical dye-sensitized solar cells use the produced dye instead of a semiconductor material for the absorption of light. The objective is to investigate an innovative approach for a sustainable energy source; wherever and whenever needed. In the course of the project phase, the team will construct a Grätzel cell testing their dye that was produced in E. coli.


Click here to edit this page!