Team:Pitt
From 2014.igem.org
Line 25: | Line 25: | ||
<hr> | <hr> | ||
- | <h2 id = " | + | <h2 id = "crowd">Crowdfunding Campaign</h2> |
+ | <p>In an effort to raise funds for the 2014 Giant Jamboree, the Pitt iGEM Team is using <a href = "https://experiment.com">Experiment.com</a> to crowd-fund our project. We would love to share our project with you, so please check out our experiment, entitled <a href = "https://experiment.com/projects/living-skin-therapeutics/">Living Skin Therapeutics</a></p> | ||
+ | <hr> | ||
+ | |||
+ | <h2 id = "blog">Team Blog</h2> | ||
+ | <p>The Pitt iGEM Team also shares a passion for writing, and we maintain a blog over at <a herf = "http://igem.pitt.wordpress.com">igempitt.wordpress.com</a>, where we offer tips and tricks we have learned while living in the lab. Feel free to check out our most recent updates:</p> | ||
+ | <p><a href = "http://igempitt.wordpress.com/2014/08/06/literature-guide-part1/">A Undergraduate Guide to Scientific Literature, Part 1</a></p> | ||
+ | <p><a href = "http://igempitt.wordpress.com/2014/08/01/sciencepalooza/">SciencePalooza</a></p> | ||
+ | |||
+ | <hr> | ||
+ | <h2 id = "demographics">Demographics Model</h2> | ||
<p>[Under construction.]</p> | <p>[Under construction.]</p> | ||
<hr> | <hr> |
Revision as of 22:57, 6 August 2014
Pitt iGEM
Acne vulgaris is an extremely common skin disease, affecting more than 80% of teenagers across most cultures. Certain strains of the bacterium, Propionibacterium acnes, have been associated with acne, yet pathogenesis of acne remains unclear. Furthermore, the frequent use of antibiotics to treat acne is one of several factors leading to a dangerous rise in antibiotic-resistant bacteria. However, scientists are unable to study P. acnes because P. acnes is resistant to traditional genetic engineering techniques.
We are developing a platform genetic vector to re-engineer P. acnes and to pioneer alternative treatments using P. acnes as a skin probiotic. Specifically, we are applying synthetic biology to a lesser known skin bacterium, P. acnes, using a bacterial plasmid and transformation protocol. Our project will allow scientists to study P. acnes for the first time using advanced research tactics (e.g., gene knockouts). In addition, we are using our plasmid to introduce an anti-microbial peptide (cathelicidin) into the P. acnes genome, which could then be used as a probiotic to potentially treat acne without prescription antibiotics. We are developing other projects, alongside our cathelicidin-producing bacteria, to improve acne treatment and promote skin health. Specifically, we are investigating the pathogenesis of acne through two separate computational models. The first model is a bottom-up approach, using logic-based modeling to analyze the inflammation pathways in the skin leading to acne. The second model is a top-down approach, using linear regression techniques to examine trends in acne across different cultures. Lastly, our team has created a community outreach module, dubbed “Dermalicious,” to teach children about skin health by making an edible model of the skin.The diversity of our project stems directly from the diversity of our team, and we believe our multi-pronged approach is necessary when trying to understand and study a complicated bacterium like P. acnes.
Crowdfunding Campaign
In an effort to raise funds for the 2014 Giant Jamboree, the Pitt iGEM Team is using Experiment.com to crowd-fund our project. We would love to share our project with you, so please check out our experiment, entitled Living Skin Therapeutics
Team Blog
The Pitt iGEM Team also shares a passion for writing, and we maintain a blog over at igempitt.wordpress.com, where we offer tips and tricks we have learned while living in the lab. Feel free to check out our most recent updates:
A Undergraduate Guide to Scientific Literature, Part 1
Demographics Model
[Under construction.]
Video
[Under construction.]