Team:Uppsala/Project Adhesion
From 2014.igem.org
(Difference between revisions)
Line 2: | Line 2: | ||
<html> | <html> | ||
<script> | <script> | ||
- | document.getElementById("tab1").innerHTML = '<p | + | document.getElementById("tab1").innerHTML = '<p>When creating a biological machine that efficiently can kill off specific pathogens without disturbing other cells in its environment, an adhesion system could play a vital role. Getting our probiotic to attach to its target, like Yersinia enterocolitica in our case, could give important advantages in target specificity and delivering medicine in a way that ensures it reaches Y. enterocolitica in a concentration as high as possible. |
The idea is to manipulate Lactobacillus expression of membrane proteins to create a somewhat stable bonding to any of Yersina’s surface structures, preventing the pathogen from even entering the gut wall. This could be done with a DNA construct coding for a membrane protein that either resembles the bonding that Yersinia makes to our cells or one that itself binds to Yersinia. | The idea is to manipulate Lactobacillus expression of membrane proteins to create a somewhat stable bonding to any of Yersina’s surface structures, preventing the pathogen from even entering the gut wall. This could be done with a DNA construct coding for a membrane protein that either resembles the bonding that Yersinia makes to our cells or one that itself binds to Yersinia. |
Revision as of 19:18, 29 July 2014
Stephanie Herman
Teresa Reinli
Joakim Hellner
Alexander Virtanen
Jennifer Rosenius
Marcus Hong
Miranda Stiernborg
Tim Hagelby Edström
Viktor Blomkvist
Megha Biradar
Niklas Handin
Jonas Mattisson
Arina Gromov
Nils Anlind
Eric Sandström
Gunta Celma
Oliver Possnert
Martin Friberg
Kira Karlsson
Christoffer Andersson
Laura Pacoste
Andries Willem Boers
Home
Failed to load tracking. JS is probably not enabled