Team:Virtus-Parva Mexico/Notebook
From 2014.igem.org
Line 128: | Line 128: | ||
<div align="justify"> | <div align="justify"> | ||
<h3><b> | <h3><b> | ||
- | 03/07/2014</b></h3></p> | + | <font color="#000000">03/07/2014</font></b></h3></p> |
<p> | <p> | ||
Line 136: | Line 136: | ||
<br> The addition of TEOS lasted 20 min and the nanoparticles were left stirring overnight. | <br> The addition of TEOS lasted 20 min and the nanoparticles were left stirring overnight. | ||
</p> | </p> | ||
- | <h3><b> 04/07/2014</b></h3></p> | + | <h3><b> <font color="#000000">04/07/2014</font></b></h3></p> |
<p> | <p> | ||
<br> The same procedure was followed, changing the amount of NH<sub>4</sub>OH for 10 ml 5M and adding this amount dropwise over 15 min. Afterwards, the addition of sodium citrate was repeated. (MB2) | <br> The same procedure was followed, changing the amount of NH<sub>4</sub>OH for 10 ml 5M and adding this amount dropwise over 15 min. Afterwards, the addition of sodium citrate was repeated. (MB2) | ||
Line 149: | Line 149: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 07/07/2014</b></h3></p> | + | <h3><b> <font color="#000000">07/07/2014</font></b></h3></p> |
<p> | <p> | ||
Line 160: | Line 160: | ||
<br>SiO<sub>2</sub>, n = 1.46 | <br>SiO<sub>2</sub>, n = 1.46 | ||
<br>2.42 + 1.46 = 3.15</center></p> | <br>2.42 + 1.46 = 3.15</center></p> | ||
- | <h3><b> 08/07/2014</b></h3></p> | + | <h3><b> <font color="#000000">08/07/2014</font></b></h3></p> |
<p> | <p> | ||
Line 170: | Line 170: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 09/07/2014</b></h3></p> | + | <h3><b> <font color="#000000">09/07/2014</font></b></h3></p> |
<p> | <p> | ||
Line 176: | Line 176: | ||
<br> For different amounts of TEOS, same results were achieved. (50, 75 and 100 μl). | <br> For different amounts of TEOS, same results were achieved. (50, 75 and 100 μl). | ||
- | <h3><b> 10/07/2014</b></h3></p> | + | <h3><b> <font color="#000000">10/07/2014</font></b></h3></p> |
<p> | <p> | ||
Line 188: | Line 188: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 11/07/2014</b></h3></p> | + | <h3><b> <font color="#000000">11/07/2014</font></b></h3></p> |
<p><br> The samples were once again washed with water, these samples easily precipitated in water, contrary to previous samples. Code names for these samples were NB2_(1-3) | <p><br> The samples were once again washed with water, these samples easily precipitated in water, contrary to previous samples. Code names for these samples were NB2_(1-3) | ||
<br> To help the precipitation, a little amount of acetone was added, this was also done for sample SB2’s aliquots. | <br> To help the precipitation, a little amount of acetone was added, this was also done for sample SB2’s aliquots. | ||
Line 201: | Line 201: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 15/07/14</b></h3></p> | + | <h3><b> <font color="#000000">15/07/14</font></b></h3></p> |
<p><br> Samples were taken of pure magnetite, silanized magnetite (NB2) and magnetite coated with silica and silane (SB2_1 and SB2_3) for its characterization in IR for solids. | <p><br> Samples were taken of pure magnetite, silanized magnetite (NB2) and magnetite coated with silica and silane (SB2_1 and SB2_3) for its characterization in IR for solids. | ||
<br> Comparing the spectra given by the IR of the pure magnetite and silanized magnetite (SB2 and NB2) we were able to distinguish a peak at 990.2 cm<sup>-1</sup> corresponding to a Si-O bond, confirming the correct silanization of the magnetite, although the amino group couldn’t be identified. | <br> Comparing the spectra given by the IR of the pure magnetite and silanized magnetite (SB2 and NB2) we were able to distinguish a peak at 990.2 cm<sup>-1</sup> corresponding to a Si-O bond, confirming the correct silanization of the magnetite, although the amino group couldn’t be identified. | ||
Line 237: | Line 237: | ||
<p> | <p> | ||
<div align="justify"><div style="margin-left: 100px;"> | <div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 29/05/2014</b></h3></p> | + | <h3><b> <font color="#000000">29/05/2014</font></b></h3></p> |
<p><br> For the first day of wetlab, we prepared the solutions we would use throughout our project. | <p><br> For the first day of wetlab, we prepared the solutions we would use throughout our project. | ||
Line 274: | Line 274: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 30/05/2014</b></h3></p> | + | <h3><b> <font color="#000000">30/05/2014</font></b></h3></p> |
<p><br> After the Tris hydration, a pH of 6.55 was obtained. What was to follow was to achieve a pH of 8 by neutralizing with NaOH. | <p><br> After the Tris hydration, a pH of 6.55 was obtained. What was to follow was to achieve a pH of 8 by neutralizing with NaOH. | ||
Line 432: | Line 432: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 03/06/2014</b></h3></p> | + | <h3><b> <font color="#000000">03/06/2014</font></b></h3></p> |
<p><br> DNA extraction of E. Coli began: | <p><br> DNA extraction of E. Coli began: | ||
Line 440: | Line 440: | ||
<p><br> The vacuum chamber was cleaned with EtOH and kept under UV light for 20 minutes. To each tube, 567 µl of TE and 30 µl of proteinase K 20 mg/ml were added. This was incubated in oven at 37 °C for an hour, then placed in the refrigerator | <p><br> The vacuum chamber was cleaned with EtOH and kept under UV light for 20 minutes. To each tube, 567 µl of TE and 30 µl of proteinase K 20 mg/ml were added. This was incubated in oven at 37 °C for an hour, then placed in the refrigerator | ||
</p> | </p> | ||
- | <h3><b> 09/06/2014</b></h3></p> | + | <h3><b> <font color="#000000">09/06/2014</font></b></h3></p> |
<p><br> As proteinase K supply was running low, a distinct method had to be pursued. | <p><br> As proteinase K supply was running low, a distinct method had to be pursued. | ||
Line 472: | Line 472: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 10/06/2014</b></h3></p> | + | <h3><b> <font color="#000000">10/06/2014</font></b></h3></p> |
<p><br> Part of the team centrifuged a day before. Re-centrifugation lasted for 10 minutes. The supernatant was cleared off. The Epperndorfs were left to dry out for about half an hour. After adding 0.5 ml of TE and two volumes of absolute EtOH, the DNA strings were not visible. | <p><br> Part of the team centrifuged a day before. Re-centrifugation lasted for 10 minutes. The supernatant was cleared off. The Epperndorfs were left to dry out for about half an hour. After adding 0.5 ml of TE and two volumes of absolute EtOH, the DNA strings were not visible. | ||
<br> We centrifuged at 1300 rpm, then a volume of 50 µl TE was added to ‘A’ labelled tubes and 200 µl to ‘B’ labelled tubes. We added DNA extracted with the first protocol to the ‘A’ labelled tubes and these were re-labelled ADN-1, labels of C-1 and C-2 were conscripted.</p> | <br> We centrifuged at 1300 rpm, then a volume of 50 µl TE was added to ‘A’ labelled tubes and 200 µl to ‘B’ labelled tubes. We added DNA extracted with the first protocol to the ‘A’ labelled tubes and these were re-labelled ADN-1, labels of C-1 and C-2 were conscripted.</p> | ||
Line 515: | Line 515: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 11/06/2014</b></h3></p> | + | <h3><b> <font color="#000000">11/06/2014</font></b></h3></p> |
<br> Ran electrophoresis over 80 V for approximately an hour and a half. | <br> Ran electrophoresis over 80 V for approximately an hour and a half. | ||
- | <h3><b> 07/08/2014</b></h3></p> | + | <h3><b> <font color="#000000">07/08/2014</font></b></h3></p> |
<p><br> The protein finally arrived. WetLab time was on the go. We re-suspended the protein and prepared EDTA and Tris/acetate.</p> | <p><br> The protein finally arrived. WetLab time was on the go. We re-suspended the protein and prepared EDTA and Tris/acetate.</p> | ||
Line 530: | Line 530: | ||
<p><br> Magnetite was dispersed in anhydric toluene followed by the addition of the resuspended protein with some triethylamine and finally glutaraldehyde was added as a coupling agent.</p> | <p><br> Magnetite was dispersed in anhydric toluene followed by the addition of the resuspended protein with some triethylamine and finally glutaraldehyde was added as a coupling agent.</p> | ||
- | <h3><b> 15/08/2014</b></h3></p> | + | <h3><b> <font color="#000000">15/08/2014</font></b></h3></p> |
<p><br> Alpha samples were divided into αG (G for glutaraldehyde) and αSG (without G), β samples were divided in the same way as α. Both G samples (α & β) were washed 3 times with PBS and some glutaraldehyde. The SG samples were both washed 3 times with pure PBS. UV spectra were taken for characterization.</p> | <p><br> Alpha samples were divided into αG (G for glutaraldehyde) and αSG (without G), β samples were divided in the same way as α. Both G samples (α & β) were washed 3 times with PBS and some glutaraldehyde. The SG samples were both washed 3 times with pure PBS. UV spectra were taken for characterization.</p> | ||
- | <h3><b> 19/08/2014</b></h3></p> | + | <h3><b> <font color="#000000">19/08/2014</font></b></h3></p> |
<p><br> Proceedings to prepare TAE for electrophoresis using TRIS, acetic acid and EDTA were performed. Agarose gel was prepared with distilled water and agarose, a loading buffer was prepared with glycerol at 10%. The electrophoresis revealing did not quite displayed desired results, a new run had to be made. | <p><br> Proceedings to prepare TAE for electrophoresis using TRIS, acetic acid and EDTA were performed. Agarose gel was prepared with distilled water and agarose, a loading buffer was prepared with glycerol at 10%. The electrophoresis revealing did not quite displayed desired results, a new run had to be made. | ||
Line 551: | Line 551: | ||
<tr><td><div align="justify"><div style="margin-left: 100px;"> | <tr><td><div align="justify"><div style="margin-left: 100px;"> | ||
- | <h3><b> 28/08/2014</b></h3></p> | + | <h3><b> <font color="#000000">28/08/2014</font></b></h3></p> |
<br> DNA extraction was performed anew: | <br> DNA extraction was performed anew: | ||
<ol><li>E. coli was cultivated in LB broth for 24 hours at 37 °C, with constant stirring.</li> | <ol><li>E. coli was cultivated in LB broth for 24 hours at 37 °C, with constant stirring.</li> | ||
Line 558: | Line 558: | ||
<li>Tube 2. E. coli in 30 ml of TE, 20 ml of isopropylic alcohol and NaOH 0.1 M were added</li></ul></ol></p> | <li>Tube 2. E. coli in 30 ml of TE, 20 ml of isopropylic alcohol and NaOH 0.1 M were added</li></ul></ol></p> | ||
- | <p><h3><b> 01/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">01/09/2014</font></b></h3></p> |
<p><br> Transformation and preparation of DH5α was done. | <p><br> Transformation and preparation of DH5α was done. | ||
<br> CaCl<sub>2</sub> was prepared to make competent cells. For a 200 ml solution, 54 grams of CaCl<sub>2</sub> were added. Also, chloramphenicol was needed, 34 micrograms for each 250 microliters.</p> | <br> CaCl<sub>2</sub> was prepared to make competent cells. For a 200 ml solution, 54 grams of CaCl<sub>2</sub> were added. Also, chloramphenicol was needed, 34 micrograms for each 250 microliters.</p> | ||
Line 566: | Line 566: | ||
<li>2.5 gr Yeast extract</li> | <li>2.5 gr Yeast extract</li> | ||
<li>0.5 gr. NaCl</li></ol></p> | <li>0.5 gr. NaCl</li></ol></p> | ||
- | <h3><b> 03/09/2014</b></h3></p> | + | <h3><b> <font color="#000000">03/09/2014</font></b></h3></p> |
<p><br> The protein was washed 3 times in PBS and sonicated for 10 minutes. The protein was then suspended in PBS and some magnetite was added. The samples were separated in four groups, those containing DNA and those without, and within them ones containing glutaraldehyde and the rest without.</p> | <p><br> The protein was washed 3 times in PBS and sonicated for 10 minutes. The protein was then suspended in PBS and some magnetite was added. The samples were separated in four groups, those containing DNA and those without, and within them ones containing glutaraldehyde and the rest without.</p> | ||
- | <h3><b> 04/09/2014</b></h3></p> | + | <h3><b> <font color="#000000">04/09/2014</font></b></h3></p> |
<p><br> Plasmid resuspension in 100 microliters TE or CaCl<sub>2</sub></p> | <p><br> Plasmid resuspension in 100 microliters TE or CaCl<sub>2</sub></p> | ||
- | <p><h3><b> 05/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">05/09/2014</font></b></h3></p> |
<br> <ul><li>Transformation of pGLO/pSB1C3:</li></ul> | <br> <ul><li>Transformation of pGLO/pSB1C3:</li></ul> | ||
<p><br> E. coli was cultivated in 30ml of LB broth, then stirred and transferred into falcon tubes. Passed into the centrifuge and washed with cold CaCl<sub>2</sub>, resuspended and recentrifuged.</p> | <p><br> E. coli was cultivated in 30ml of LB broth, then stirred and transferred into falcon tubes. Passed into the centrifuge and washed with cold CaCl<sub>2</sub>, resuspended and recentrifuged.</p> | ||
Line 582: | Line 582: | ||
- | <p><h3><b> 09/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">09/09/2014</font></b></h3></p> |
<br> <ul><li>DNA Purification:</li></ul> | <br> <ul><li>DNA Purification:</li></ul> | ||
<p><br> In the presence of ethanol it precipitates, it then was centrifuged and the supernatant disposed of. Resuspension on PBS followed and then passed onto an Eppendorf tube and finally adding some RNAse.</p> | <p><br> In the presence of ethanol it precipitates, it then was centrifuged and the supernatant disposed of. Resuspension on PBS followed and then passed onto an Eppendorf tube and finally adding some RNAse.</p> | ||
- | <p><h3><b> 17/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">17/09/2014</font></b></h3></p> |
<br> <ul><li>Protein+DNA:</ul></li> | <br> <ul><li>Protein+DNA:</ul></li> | ||
<p><br> Different dilutions of DNA were separated labeling samples as β and γ. These, as well, were divided with and without glutaraldehyde, and subsequently with and without DNA. We did some UV characterization for all the samples. All data was saved.</p> | <p><br> Different dilutions of DNA were separated labeling samples as β and γ. These, as well, were divided with and without glutaraldehyde, and subsequently with and without DNA. We did some UV characterization for all the samples. All data was saved.</p> | ||
- | <p><h3><b> 21/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">21/09/2014</font></b></h3></p> |
<p><br> +pGLO was cultivated in LB.</p> | <p><br> +pGLO was cultivated in LB.</p> | ||
- | <p><h3><b> 24/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">24/09/2014</font></b></h3></p> |
<p><br> 1ml of cultivated LB was dropped in Eppendorf tubes along with +pSBC13.</p> | <p><br> 1ml of cultivated LB was dropped in Eppendorf tubes along with +pSBC13.</p> | ||
- | <p><h3><b> 25/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">25/09/2014</font></b></h3></p> |
<p><br> Some washes with water of the β and γ samples, some PBS was put into the mixture as well. | <p><br> Some washes with water of the β and γ samples, some PBS was put into the mixture as well. | ||
<br> Original samples stay resuspended in water, and new samples are kept on the fridge. The samples for electrophoresis and for UV characterization were prepared.</p> | <br> Original samples stay resuspended in water, and new samples are kept on the fridge. The samples for electrophoresis and for UV characterization were prepared.</p> | ||
- | <p><h3><b> 26/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">26/09/2014</font></b></h3></p> |
<br> <ul><li>Preparation of mediums LB/CP/iPGT for a pSB1C3 promoter:</ul></li> | <br> <ul><li>Preparation of mediums LB/CP/iPGT for a pSB1C3 promoter:</ul></li> | ||
<p><br> First, the transformation was made. For this, E.Coli was cultured in LB broth, stirred at 37Cº, transferred into a Falcon tube for centrifuging at 1500rpm 4°C during 10 minutes, and resuspended in CaCl<sub>2</sub>. Recentrifuged again and repeat. The suspension was left on ice for half an hour. Another centrifuging, and another resuspension, some sample was taken and passed into an Eppendorf tube containing +pGLO. Ice resting for another 30 minutes. Then, incubation in a stove at 37Cº.</p> | <p><br> First, the transformation was made. For this, E.Coli was cultured in LB broth, stirred at 37Cº, transferred into a Falcon tube for centrifuging at 1500rpm 4°C during 10 minutes, and resuspended in CaCl<sub>2</sub>. Recentrifuged again and repeat. The suspension was left on ice for half an hour. Another centrifuging, and another resuspension, some sample was taken and passed into an Eppendorf tube containing +pGLO. Ice resting for another 30 minutes. Then, incubation in a stove at 37Cº.</p> | ||
Line 609: | Line 609: | ||
<br> Finally, the tubes were centrifuged one last time and the sample separated in two, having two different concentrations.</p> | <br> Finally, the tubes were centrifuged one last time and the sample separated in two, having two different concentrations.</p> | ||
- | <p><h3><b> 28/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">28/09/2014</font></b></h3></p> |
<p><br> Some of the σ samples were prepared, one with glutaraldehyde and DNA-protein, another with glutaraldehyde and DNA; the third, with DNA-protein and the last one with DNA only. | <p><br> Some of the σ samples were prepared, one with glutaraldehyde and DNA-protein, another with glutaraldehyde and DNA; the third, with DNA-protein and the last one with DNA only. | ||
<br> The ε samples were prepared likewise its σ counterparts. A and B samples were prepared with some nanoparticles.</p> | <br> The ε samples were prepared likewise its σ counterparts. A and B samples were prepared with some nanoparticles.</p> | ||
- | <p><h3><b> 30/09/2014</b></h3></p> | + | <p><h3><b> <font color="#000000">30/09/2014<font></b></h3></p> |
<p><br> The A10, E10, C10, B10 samples were ran in an agarose gel at 1% and prepared to an electrophoresis run.</p> | <p><br> The A10, E10, C10, B10 samples were ran in an agarose gel at 1% and prepared to an electrophoresis run.</p> | ||
- | <p><h3><b> Performed tests</b></h3></p> | + | <p><h3><b> <font color="#000000">Performed tests</font></b></h3></p> |
<br> <ul><li>Electroporation by using the system on BBa_K737051 as control against psBC13 alone</li> | <br> <ul><li>Electroporation by using the system on BBa_K737051 as control against psBC13 alone</li> | ||
<li>Electrophoresis using DNA as λ marker with an integrated colorant to the system</li> | <li>Electrophoresis using DNA as λ marker with an integrated colorant to the system</li> |
Latest revision as of 03:58, 18 October 2014
Notebooks
Inorganic Notebook
|
|
03/07/2014
04/07/2014
|
|
07/07/2014
SiO2, n = 1.46 2.42 + 1.46 = 3.15 08/07/2014
| |
09/07/2014
10/07/2014
|
|
11/07/2014
|
|
15/07/14
|
Biology Notebook
29/05/2014
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
30/05/2014
Sudden realization came when the pHmeter was reviewed; it wasn’t working, so the pH was, in fact, much higher than the one figured on display. The next step was to acidify by dropwise adding of HCl.
In order to dissolve the EDTA in water, it was needed to raise the pH up to 8 (it was at 3.83)
The first of many sterilizations took place (1 box of blue tips, 1 box of yellow tips, TE Buffer and EDTA
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
03/06/2014
09/06/2014
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10/06/2014
Electrophoresis was run on DNA to check in indeed DNA was present.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11/06/2014Ran electrophoresis over 80 V for approximately an hour and a half. 07/08/2014
15/08/2014
19/08/2014
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
28/08/2014DNA extraction was performed anew:
01/09/2014
500 ml of LB broth were prepared with:
03/09/2014
04/09/2014
05/09/2014
09/09/2014
17/09/2014
21/09/2014
24/09/2014
25/09/2014
26/09/2014
28/09/2014
30/09/2014
Performed tests
|