Team:Paris Bettencourt/Project/Odor Library
From 2014.igem.org
Line 213: | Line 213: | ||
<h6>Aims and Achievement</h6><br> | <h6>Aims and Achievement</h6><br> | ||
<p class=text1>Here we present the design of an odor wheel. It is composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with characteristic smells. We included smells with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings. </p> | <p class=text1>Here we present the design of an odor wheel. It is composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with characteristic smells. We included smells with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings. </p> | ||
- | |||
- | |||
- | |||
<h6>Introduction</h6><br> | <h6>Introduction</h6><br> | ||
<p class=text1>There are complex relations among the stereochemistry of volatile compounds, their ratio within a particular mix, the amount of active olfactory receptors expressed in the smeller, as well as the distribution, and interaction of the different olfactory receptor neurons (ORNs). Odors spark neurochemical signals that are processed in different areas of the brain; they trigger complex cognitive processes that affect emotional responses such as motivation and memory. Although the precise molecular mechanisms behind odor perception have not been fully understood, there has been significant advance in the biosynthesis of organic volatile compounds using bacterial and fungal systems. </p> | <p class=text1>There are complex relations among the stereochemistry of volatile compounds, their ratio within a particular mix, the amount of active olfactory receptors expressed in the smeller, as well as the distribution, and interaction of the different olfactory receptor neurons (ORNs). Odors spark neurochemical signals that are processed in different areas of the brain; they trigger complex cognitive processes that affect emotional responses such as motivation and memory. Although the precise molecular mechanisms behind odor perception have not been fully understood, there has been significant advance in the biosynthesis of organic volatile compounds using bacterial and fungal systems. </p> | ||
- | + | ||
- | + | ||
- | + | ||
<h6>Results</h6><br> | <h6>Results</h6><br> | ||
<p class=text1>Proper BioBrick characterization is needed before tinkering with expression levels; the possibility to change ribosomal binding sites according to the desired expression is included in our design. We would also like to develop auto-inducible smelly systems, as well as broaden the available tones in our palette. </p> | <p class=text1>Proper BioBrick characterization is needed before tinkering with expression levels; the possibility to change ribosomal binding sites according to the desired expression is included in our design. We would also like to develop auto-inducible smelly systems, as well as broaden the available tones in our palette. </p> | ||
- | + | ||
- | + | ||
- | + | ||
<h6>Methods</h6><br> | <h6>Methods</h6><br> | ||
<p class=text1>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut imperdiet diam eget quam imperdiet imperdiet. Mauris dapibus risus felis, sed ornare diam accumsan aliquet. Sed eu turpis porta, porttitor tortor et, condimentum augue. Curabitur a maximus nisi. Vivamus vitae magna ex. Donec congue auctor odio vitae tempus. In a gravida neque, et tristique tortor. Phasellus a odio sit amet enim ornare lobortis. Morbi sodales, diam non rutrum aliquam, ligula mauris consectetur urna, sed interdum quam risus sit amet enim. Aenean euismod enim magna, id pretium eros molestie non. Proin rutrum lobortis leo, sit amet congue erat. Nulla congue pellentesque augue porta dignissim. Pellentesque quis ex sollicitudin, condimentum risus varius, aliquet ipsum. Ut pulvinar aliquet maximus. Praesent imperdiet interdum commodo. </p> | <p class=text1>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut imperdiet diam eget quam imperdiet imperdiet. Mauris dapibus risus felis, sed ornare diam accumsan aliquet. Sed eu turpis porta, porttitor tortor et, condimentum augue. Curabitur a maximus nisi. Vivamus vitae magna ex. Donec congue auctor odio vitae tempus. In a gravida neque, et tristique tortor. Phasellus a odio sit amet enim ornare lobortis. Morbi sodales, diam non rutrum aliquam, ligula mauris consectetur urna, sed interdum quam risus sit amet enim. Aenean euismod enim magna, id pretium eros molestie non. Proin rutrum lobortis leo, sit amet congue erat. Nulla congue pellentesque augue porta dignissim. Pellentesque quis ex sollicitudin, condimentum risus varius, aliquet ipsum. Ut pulvinar aliquet maximus. Praesent imperdiet interdum commodo. </p> |
Revision as of 01:08, 18 October 2014
Synthetic enzymes can produce odors that humans experience directly, without special instruments. The banana and wintergreeen smell BioBricks are iGEM icons, and a favorite way to introduce genetic engineering. An expanded library of easy-to-use odor enzymes would take synthetic biology to new audiences for creativity, beauty and fun! |
|
Aims and Achievement | Introduction | Results | Methods |
Aims and Achievement
Here we present the design of an odor wheel. It is composed of BioBricks containing coding sequences for different enzymes known to catalyze reactions that yield volatile compounds with characteristic smells. We included smells with different tonalities in order to explore the aromas resulting from different combinations of smelly units. The tonality of each smell is categorized as butter, balminess, citrus, non-citrus fruit and herbal. These cover half of the main odor categories perceivable to human beings.
Introduction
There are complex relations among the stereochemistry of volatile compounds, their ratio within a particular mix, the amount of active olfactory receptors expressed in the smeller, as well as the distribution, and interaction of the different olfactory receptor neurons (ORNs). Odors spark neurochemical signals that are processed in different areas of the brain; they trigger complex cognitive processes that affect emotional responses such as motivation and memory. Although the precise molecular mechanisms behind odor perception have not been fully understood, there has been significant advance in the biosynthesis of organic volatile compounds using bacterial and fungal systems.
Results
Proper BioBrick characterization is needed before tinkering with expression levels; the possibility to change ribosomal binding sites according to the desired expression is included in our design. We would also like to develop auto-inducible smelly systems, as well as broaden the available tones in our palette.
Methods
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut imperdiet diam eget quam imperdiet imperdiet. Mauris dapibus risus felis, sed ornare diam accumsan aliquet. Sed eu turpis porta, porttitor tortor et, condimentum augue. Curabitur a maximus nisi. Vivamus vitae magna ex. Donec congue auctor odio vitae tempus. In a gravida neque, et tristique tortor. Phasellus a odio sit amet enim ornare lobortis. Morbi sodales, diam non rutrum aliquam, ligula mauris consectetur urna, sed interdum quam risus sit amet enim. Aenean euismod enim magna, id pretium eros molestie non. Proin rutrum lobortis leo, sit amet congue erat. Nulla congue pellentesque augue porta dignissim. Pellentesque quis ex sollicitudin, condimentum risus varius, aliquet ipsum. Ut pulvinar aliquet maximus. Praesent imperdiet interdum commodo.