Team:INSA-Lyon/Results
From 2014.igem.org
(Difference between revisions)
AfricaSmith (Talk | contribs) |
|||
Line 32: | Line 32: | ||
<ul id="contenu1" style="list-style-type: none !important;display:none;"> | <ul id="contenu1" style="list-style-type: none !important;display:none;"> | ||
<li><p> | <li><p> | ||
- | <div><p align="justify"><br/>Five complementary tests were performed to evaluate the ability of the modified cells to assemble functional curli: <b>1)</b> determination of the percentage of adherent cells to polystyrene in 24 wells-plates,<b> 2)</b> crystal violet staining of biofilm formed on polystyrene in 24 wells-plates, <b>3)</b> ability to bind the congo red,<b> 4)</b> biofilm maximum thickness measurement and biovolumes quantification of GFP-tagged biofilm observed with a confocal microscopy and <b> 5)</b> curli structure observation using Transmission Electron Microscopy (MET).</p> | + | <div><p align="justify"><br/>Five complementary tests were performed to evaluate the ability of the modified cells to assemble functional curli: |
+ | </br> | ||
+ | <b>1)</b> determination of the percentage of adherent cells to polystyrene in 24 wells-plates,<b></br> | ||
+ | 2)</b> crystal violet staining of biofilm formed on polystyrene in 24 wells-plates, <b></br> | ||
+ | 3)</b> ability to bind the congo red,<b></br> | ||
+ | 4)</b> biofilm maximum thickness measurement and biovolumes quantification of GFP-tagged biofilm observed with a confocal microscopy and </br> | ||
+ | <b> 5)</b> curli structure observation using Transmission Electron Microscopy (MET).</p> | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
Line 39: | Line 45: | ||
<div align=”center”><img src="https://static.igem.org/mediawiki/2014/0/0e/Adh%C3%A9rence.png" alt="Figure 1 : Engineered bacteria Percentage of adhesion"/></div> | <div align=”center”><img src="https://static.igem.org/mediawiki/2014/0/0e/Adh%C3%A9rence.png" alt="Figure 1 : Engineered bacteria Percentage of adhesion"/></div> | ||
<b>Figure 1 : Engineered bacteria Percentage of adhesion</b><br/> | <b>Figure 1 : Engineered bacteria Percentage of adhesion</b><br/> | ||
- | <p align="justify"><i>csgA-</i>knockout <i>E. coli</i> strain was transformed with BBa_CsgA-WT (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404006">BBa_K1404006</a>); BBa_CsgA-His1 (<a href="http://parts.igem.org/Part:BBa_K1404007">BBa_K1404007</a>); BBa_CsgA-His2 (<a href="http://parts.igem.org/Part:BBa_K1404008">BBa_K1404008</a>). The corresponding positive and negative controls are Wild-type <i>E.coli</i> curli producing strain transformed | + | <p align="justify"><i>csgA-</i>knockout <i>E. coli</i> strain was transformed with BBa_CsgA-WT (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404006">BBa_K1404006</a>); BBa_CsgA-His1 (<a href="http://parts.igem.org/Part:BBa_K1404007">BBa_K1404007</a>); BBa_CsgA-His2 (<a href="http://parts.igem.org/Part:BBa_K1404008">BBa_K1404008</a>). The corresponding positive and negative controls are, respectively, Wild-type <i>E.coli</i> curli producing strain transformed with the empty vector and <i>csgA-</i>-knockout <i>E. coli</i> strain transformed with the empty vector. <br/> |
- | Strains with our parts, the positive and negative controls were | + | Strains with our parts, the positive and negative controls were cultured in a 24-wells microplate in M63 Mannitol during 24H at 30°C. The supernatant was removed and the OD600 measured, then the bacteria forming the biofilm were resuspended and the OD600 was measured in order to estimate the number of cells (<a href="https://static.igem.org/mediawiki/2014/8/80/Adhesion_test_protocole.pdf">See protocol for details </a>). The percentage of adhesion was calculated as follows: |
(OD600 of the biofilm)/ (OD600 of the supernatant + OD600 of the biofilm) <br/> | (OD600 of the biofilm)/ (OD600 of the supernatant + OD600 of the biofilm) <br/> | ||
- | + | Different uppercase letters displayed on the graph indicate significant differences between strains (Tukey’s test, p < 0.05) <br/> | |
<br/> | <br/> | ||
- | These results show that <b>the percentage of adhesion is similar between the strains containing the three parts and the positive control, thus tagged CsgA were still functional</b>. CsgA with one or two tags | + | These results show that <b>the percentage of adhesion is similar between the strains containing the three parts and the positive control, thus tagged CsgA were still functional</b>. CsgA with one or two tags expressed by the P70 promoter were sufficient to form thick biofilms. </p><br/> |
<div align=”center”><img src=https://static.igem.org/mediawiki/2014/d/dc/Crystal_violet_2.png align=”center” alt="Figure 2 : Engineered bacteria Biofilm formation"/></div> | <div align=”center”><img src=https://static.igem.org/mediawiki/2014/d/dc/Crystal_violet_2.png align=”center” alt="Figure 2 : Engineered bacteria Biofilm formation"/></div> | ||
<b>Figure 2 : Engineered bacteria Biofilm formation</b><br/> | <b>Figure 2 : Engineered bacteria Biofilm formation</b><br/> | ||
- | <p align=" justify ">The cells were | + | <p align=" justify ">The cells were cultured as described in figure 1. <br/> |
- | <div align="justify"><p>The supernatant was removed and the remaining biofilm was fixed to the microplate by heat treatment at 80°C during 1H. The | + | <div align="justify"><p>The supernatant was removed and the remaining biofilm was fixed to the microplate by heat treatment at 80°C during 1H. The crystal violet solution was added in each well in order to stain the cells and the wells were washed with water to remove crystal violet in excess (<a href="https://static.igem.org/mediawiki/2014/e/ef/Crystal_Violet_protocole.pdf">See protocol for details </a>).<br/> |
<br/> | <br/> | ||
- | + | Crystal violet staining shows that <b>the strain containing the three parts could form a biofilm like the positive control. Thus tagged CsgA were still functional</b>. CsgA with one or two tags expressed by the P70 promoter were sufficient to form thick biofilms.</p></div> </p> | |
<br/> | <br/> | ||
<div align=”center”><img src=" https://static.igem.org/mediawiki/2014/8/81/Congo_Red_2.png" align=”center” alt="Figure 3 : Engineered bacteria curli production"/></div> | <div align=”center”><img src=" https://static.igem.org/mediawiki/2014/8/81/Congo_Red_2.png" align=”center” alt="Figure 3 : Engineered bacteria curli production"/></div> | ||
<b>Figure 3 : Engineered bacteria curli production</b><br/> | <b>Figure 3 : Engineered bacteria curli production</b><br/> | ||
<p align="justify">Strains are the same as in figure 1. <br/> | <p align="justify">Strains are the same as in figure 1. <br/> | ||
- | Strains with our parts, the positive and negative control were | + | Strains with our parts, the positive and negative control were cultured in M63 Mannitol at 30°C and 180rpm. After centrifugation, the supernatant was removed and the cell pellet was resuspended in the Congo Red solution, in order to specifically stain the curli. The samples were centrifuged again and the pellets were observed (See protocol for more details). <br/> |
<br/> | <br/> | ||
- | Congo Red staining shows that <b>the CsgA with one or two | + | Congo Red staining shows that <b>the CsgA with one or two tags expressed by the P70 promoter allows to form curli fibers</b> which are able to bind Congo Red.<br/></p> |
</div> | </div> | ||
<br/> | <br/> | ||
Line 71: | Line 77: | ||
- | <p></br>As no strains carrying our parts show a significant difference with the positive control, our | + | <p></br>As no strains carrying our parts show a significant difference with the positive control, our part’s insertion doesn’t modify the biofilm formation properties. <b>The His-Tag and His2-Tag engineered CsgA doesn’t disturb the curli formation.</b></p> |
</p> | </p> | ||
Line 80: | Line 86: | ||
</h6> | </h6> | ||
<br/> | <br/> | ||
- | <p>For the Transmission Electron Microscopy, all the strains were | + | <p>For the Transmission Electron Microscopy, all the strains were cultured in conditions that allow curli formation: 48h (for a 50 mL culture), 28⁰C temperature and low agitation. The ammonium molybdate was used as a negative colorant (Microscope: MET PHILIPS CM120). </p> |
<br/> | <br/> | ||
<img src="https://static.igem.org/mediawiki/2014/8/8a/Figure5_MET.png" | <img src="https://static.igem.org/mediawiki/2014/8/8a/Figure5_MET.png" | ||
Line 93: | Line 99: | ||
<h6> General Conclusion | <h6> General Conclusion | ||
</h6> | </h6> | ||
- | <p><br/><b>The expression of CsgA derivatives</b> | + | <p><br/><b>The expression of CsgA derivatives</b> expressed by the p70 <i>csg</i> promoter carried by the psb1c3 plasmid leads to <b>functional CsgA</b>, and allows <i>E. coli</i> to <b>stick and form biofilm</b>. Moreover, our results show that the <b>addition of one or two His-Tag on the C-term of CsgA doesn’t disturb the normal properties of curli</b> (sturdiness, adhesion, structure and folding of CsgA).</p><br/></div></li> |
</ul> | </ul> | ||
Line 102: | Line 108: | ||
<p> | <p> | ||
- | <div align="justify"><p> Nickel(II) chelation was evaluated in a CsgA- MG1655 background (in order to have only our modified or unmodified curlis at the surface of the strain) for each of the constructions (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404006">BBa_CsgA-WT (BBa_K1404006)</a>, <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404007">BBa_CsgA-His1 (BBa_K1404007)</a>,or <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404008">BBa_CsgA-His2 (BBa_K1404008)</a>). Dimethylglyoxime (DMG) was used as a complexing reagent, which forms a pink-colored complex (peak absorption at 554nm) in the presence of Ni(II). </p> | + | <div align="justify"><p> Nickel(II) chelation was evaluated in a CsgA- MG1655 background (in order to have only our modified or unmodified curlis at the surface of the strain) for each one of the constructions (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404006">BBa_CsgA-WT (BBa_K1404006)</a>, <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404007">BBa_CsgA-His1 (BBa_K1404007)</a>,or <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404008">BBa_CsgA-His2 (BBa_K1404008)</a>). Dimethylglyoxime (DMG) was used as a complexing reagent, which forms a pink-colored complex (peak absorption at 554nm) in the presence of Ni(II). </p> |
<div align="center"> | <div align="center"> | ||
Line 112: | Line 118: | ||
<p>Firstly, a <b> calibration curve </b> of the formation Nickel and DMG complexes was established. </p> | <p>Firstly, a <b> calibration curve </b> of the formation Nickel and DMG complexes was established. </p> | ||
- | <p>Then, strains were assayed for biofilm nickel absorption | + | <p>Then, liquid cultured strains were assayed for biofilm nickel absorption using the calibration curve, after measuring the OD of the complex formed for each strain at 554nm. (<a href="https://static.igem.org/mediawiki/2014/0/01/Ni_chelation_DMG_n.pdf">See Protocol for details</a>)<br/> |
Although quantification is possible, this technique lacks precision and is more suited for <b>qualitative</b> studies. However, it is a cheaper alternative to ICP-MS. </p> | Although quantification is possible, this technique lacks precision and is more suited for <b>qualitative</b> studies. However, it is a cheaper alternative to ICP-MS. </p> | ||
Line 124: | Line 130: | ||
</div> | </div> | ||
<br/> | <br/> | ||
- | <p>Nickel-DMG complex colorimetry measurement follows a <b>linear regression</b> from | + | <p>Nickel-DMG complex colorimetry measurement follows a <b>linear regression</b> for concentrations from 20uM to 100uM. Visually, we can see gradient from transparency (at [20uM]) to pink (at [100uM]). This visual method allows us to compare the Ni chelation between our strains. The paler the color is, the more Ni has been chelated. The culture supernatant of CsgA- bacteria from strain with the part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404008">BBBa_CsgA-His2</a> is less colored than the others, which shows that this part allows to capture more nickel. |
These results show that <b>the part BBa_CsgA-His2 confers increased chelation</b> to strain CsgA-. It is shown that it chelates more than part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404006">BBa_CsgA-WT</a> and part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404007">BBa_CsgA-His1</a>. </p> | These results show that <b>the part BBa_CsgA-His2 confers increased chelation</b> to strain CsgA-. It is shown that it chelates more than part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404006">BBa_CsgA-WT</a> and part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404007">BBa_CsgA-His1</a>. </p> | ||
- | <p>A second method has been used, more <b>quantitative</b> and more precise (but more expensive) : <b> ICP-MS </b>. (<a href="https://static.igem.org/mediawiki/2014/f/f7/Ni_chelation.pdf">See Protocol for more details</a>)<br/> The metal content of the bacterial pellets were assayed. The quantity of chelated nickel for each strain | + | <p>A second method has been used, more <b>quantitative</b> and more precise (but more expensive) : <b> ICP-MS </b>. (<a href="https://static.igem.org/mediawiki/2014/f/f7/Ni_chelation.pdf">See Protocol for more details</a>)<br/> The metal content of the bacterial pellets were assayed. The quantity of chelated nickel for each strain was compared to the quantity of curlis formed by each strain.</p> |
<div align="center"> | <div align="center"> | ||
Line 136: | Line 142: | ||
<b>Figure 4 : ICP-MS results : Ni(II) chelated for each construction linked to the quantity of curlis</b><br/> </div> | <b>Figure 4 : ICP-MS results : Ni(II) chelated for each construction linked to the quantity of curlis</b><br/> </div> | ||
- | <p> | + | <p> Different lowercase letters displayed on the graph indicate significant differences between strains (Tukey’s test, p < 0.05). Error bars represent standard deviations.</p> |
- | <p>Taken together, these results show that the CsgA- Strain with part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404008">BBa_CsgA-His2</a> chelates twice | + | <p>Taken together, these results show that the CsgA- Strain with part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404008">BBa_CsgA-His2</a> chelates twice as much as strain CsgA- with part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1404007">BBa_CsgA-His1</a>. That means that <b>only two His-tags on C-term can improve the natural nickel chelation capacities of CsgA </b>. CsgA with a single His-tag did not perform better than a wild-type CsgA. Potentially, further increase of the amount of His-tags could improve the nickel accumulation capacities of CsgA. </p> |
<br/> </div> | <br/> </div> | ||
Line 144: | Line 150: | ||
</p></li> | </p></li> | ||
</ul> | </ul> | ||
- | |||
- | |||
<li><a href="#contenu3" onclick="$('#contenu3').slideToggle('slow')"><h1><img src="https://static.igem.org/mediawiki/2014/d/d5/Insa_fleche_titre.png" width="20px" />Survival after UV and high temperature exposure</h1></a><hr/></li> | <li><a href="#contenu3" onclick="$('#contenu3').slideToggle('slow')"><h1><img src="https://static.igem.org/mediawiki/2014/d/d5/Insa_fleche_titre.png" width="20px" />Survival after UV and high temperature exposure</h1></a><hr/></li> | ||
Line 324: | Line 328: | ||
</li> | </li> | ||
</ul> | </ul> | ||
- | |||
Line 332: | Line 335: | ||
<p><p align="justify"> | <p><p align="justify"> | ||
- | As a follow-up to the exploration of curli production and nickel chelation, we want to know the kinetics behind the 70 base-pair long promoter sequence that we used | + | As a follow-up to the exploration of curli production and nickel chelation, we want to know the kinetics behind the 70 base-pair long promoter sequence that we used during the whole summer. |
- | In fact, it has the interesting property of being activated at 37°C instead of the 30°C of the natural 750 base-pair CsgA promoter from where it is | + | In fact, it has the interesting property of being activated at 37°C instead of the 30°C of the natural 750 base-pair CsgA promoter from where it is originally isolated. However, we explored these two promoters' kinetics at 30 and 37°C by inserting a GFP downstream. |
- | + | ||
- | + | ||
- | + | ||
- | On a pKK backbone, two essential parts have been assembled: a promoter and a reporter. The reporter in this case is always the same: GFP. However, the promoter is different for each construction. | + | On a pKK backbone, two essential parts have been assembled: a promoter and a reporter gene. The reporter gene in this case is always the same: GFP. However, the promoter is different for each construction. |
- | + | On the one hand, P70 is the 70 base-pair long promoter sequence and when combined to the reporter GFP, the construction is called p70:GFP. | |
- | On | + | On the other hand, P750 is the 750 base-pair long promoter sequence coding for the inter-genic regulation region of curli production and combined to the reporter GFP, the construction is called P750:GFP.</br> |
The idea behind the two constructions is shown in the figure below. | The idea behind the two constructions is shown in the figure below. | ||
</p></p> | </p></p> | ||
Line 353: | Line 353: | ||
<p align="justify">During the early growth stages at 37°C, we can observe that the P70 (orange) has a higher GFP expression level compared to the P750 (red). | <p align="justify">During the early growth stages at 37°C, we can observe that the P70 (orange) has a higher GFP expression level compared to the P750 (red). | ||
However at 30°C, both P70 (light blue) and P750 (dark blue) have low GFP expression levels. | However at 30°C, both P70 (light blue) and P750 (dark blue) have low GFP expression levels. | ||
- | We conclude that P70 has the ability to prematurely activate downstream expression at 37°C | + | We conclude that P70 has the ability to prematurely activate downstream expression at 37°C. |
</p></p> | </p></p> | ||
Line 363: | Line 363: | ||
<p> | <p> | ||
<b>Late growth stage promoter kinetics</b></br> | <b>Late growth stage promoter kinetics</b></br> | ||
- | <p align="justify">During the late growth stages at 37°C, we can observe that both P70 (orange) and P750 (red) have a downregulated GFP expression and are moving | + | <p align="justify">During the late growth stages at 37°C, we can observe that both P70 (orange) and P750 (red) have a downregulated GFP expression and are moving towards lower expressions. |
However at 30°C, P70 (light blue) stabilizes within the range of low GFP expressions and P750 (dark blue) reaches the highest GFP expression values. | However at 30°C, P70 (light blue) stabilizes within the range of low GFP expressions and P750 (dark blue) reaches the highest GFP expression values. | ||
- | We conclude that P750 has a delayed, albeit extremely | + | We conclude that P750 has a delayed, albeit extremely high-leveled, GFP expression at 30°C. |
</p></p> | </p></p> | ||
Revision as of 01:07, 18 October 2014