Team:SCUT-China/Project/Synthetic TKL
From 2014.igem.org
Invly leung (Talk | contribs) |
Invly leung (Talk | contribs) |
||
Line 120: | Line 120: | ||
<img src="https://static.igem.org/mediawiki/2014/e/eb/B1%EF%BC%88%E5%AF | <img src="https://static.igem.org/mediawiki/2014/e/eb/B1%EF%BC%88%E5%AF | ||
- | %B9%EF%BC%89.png" height=450px width= | + | %B9%EF%BC%89.png" height=450px width=800px></img> |
</p> | </p> | ||
Line 232: | Line 232: | ||
<p> | <p> | ||
- | <img src="https://static.igem.org/mediawiki/2014/7/7a/003-01.png"height= | + | <img src="https://static.igem.org/mediawiki/2014/7/7a/003-01.png"height=300px width=500px></img> |
</p> | </p> | ||
<p> | <p> | ||
- | <img src="https://static.igem.org/mediawiki/2014/3/3c/002-01.png"height= | + | <img src="https://static.igem.org/mediawiki/2014/3/3c/002-01.png"height=300px width=500px></img> |
</p> | </p> | ||
<p> | <p> | ||
- | <img src="https://static.igem.org/mediawiki/2014/5/55/001-01-1.png"height= | + | <img src="https://static.igem.org/mediawiki/2014/5/55/001-01-1.png"height=300px width=500px></img> |
</p> | </p> | ||
Revision as of 23:36, 17 October 2014
Polyketide Synthesis
Overview
In this project, we propose that DNA coding for polyketide synthase
domains can be standardized and reconstructed to generate chimeric
polyketide synthases that produce new-to-nature polyketides, through
which we can dramatically expand the library of antibiotic candidates.
In order to demonstrate the feasibility of our proposal, we conducted
“proof of concept” experiments to synthesize a simple polyketide—
triketide lactone 1B—using a truncated erythromycin-producing
polyketide synthase assembled with biobricks constructed by
standardizing essential domains required for the synthesis of the
triketide lactone. The domains we standardized are the loading domain,
domains of DEBS1 and the thioesterase (TE) domain from DEBS3 (Fig. 1).
The loading domain is required for the direct loading of propionyl-CoA
to form a starter unit for triketide lactone. DEBS1 is a large
multifunctional polypeptide composed of two modules that incorporate
(2S)-methylmalonyl-CoA to form extender units. The TE domain catalyzes
the intramolecular cyclization of the triketide to form the target
triketide lactone. [1]The target product is expected to be detected
and identified from the culture broth.
Design
Candidate selection
Biosynthesis of polyketides like erythromycin, tacrolimus and many
others are guided by modular PKS genes. These genes encode large
enzymes consisting of modules of domains, forming an "assembly line"
to extend the ketide units to form polyketides. Among the known PKS
genes, the genes coding for erythromycin producing polyketide
synthethase have been extensively and deeply studied, and there are
numerous information sources. Therefore, we chose a truncated
erythromycin-producing polyketide synthase which has been proved to
produce a simple triketide lactone 1B.[2]
Standardization of domains
Figuring Out the Boundary
With the idea of engineering PKS genes to be interchangeable domains, we firstly develop certain design principles for the engineering of PKS genes. Although many PKSs are highly modular proteins consisting of modules of domains, figuring out the boundary of each domain should be carefully considered because slight changes may result in lost of function.
To achieve this goal, we searched for more information from two
database ASMPKS (Analysis System for Modular Polyketide Synthases:http://gate.smallsoft.co.kr:8008/~hstae/asmpks/pks_prediction.pl ) and MAPSI (Management and Analysis for Polyketide Synthase type I: http://gate.smallsoft.co.kr:8008/pks/ ). According to the resource
provided by these websites, we separated the sequences of DEBS1 with
centering on domains.
Standardization of Interchangeable Domains
Once the boundaries of the domains have been defined, standard prefix
or suffix should be assigned to each end of the domains to make them
interchangeable. The standardization of sufficient numbers of domains
from numerous organisms would allow customized replacement,
rearrangement, and/or recombining of different domains to produce
novel polyketides. In this project, we tested customized synthesis of
triketide lactones by replacing the loading domain and swapping KR+ACP
domains between modules to test the compatibility of the standardized
domains.
The “proof-of-concept” product--triketide lactone 1B
Assemble standardized domains
To validate our proposal we attempted to express the varient -- DEBS1+TE in E.coli. [3] Initially, we tried to amplify the coding sequences for each individual domain from Saccharopolyspora erythraea genomic DNA by PCR using primers consisting of RFC 23. However, after laborious work of weeks, we had failed to obtain proper PCR products due to the high G+C content (≥70%) of the interest DNA sequences. Afterward, to achieve our goal in a more efficient way, we contracted GENEWIZ, an international genomics service company, to synthesize the genes. With the coding genes under the control of T7 promoter and double T7 terminator, we successfully assembled three constructs for our design.
We were able to assemble all of our constructs and continued our work
with our synthetic DEBS1+TE, DEBS1’+TE (KR of module2 in DEBS1 was
replaced with KR of module1) and RFP+DEBS1+TE (DEBS1 was fused with
red fluorescent protein) by transforming them into the E. coli strain
BAP1. (Fig. 2)
If the right product triketide lactone can be generated, we can conclude that the standardized domains can work relatively independently and generate normal product.
Also, we changed the loading domains which selected different substrates resulting in product of different polyketides.
Furthermore, we can shuffle the domains as units between different
DEBSs.
Induction of PKSs
12-48 hours after induction with IPTG, culture broth samples of the
recombinant strain expressing the chimeric polyketide synthetases were
collected and subjected for further analysis.
Results
1. DNA Electrophoresis
We used restriction enzyme digestion and/or PCR to validate the
constructs (Fig. 3). The constructs carrying DEBS1+TE and DEBS1’+TE
were isolated and digested with EcoRI (Fig. 3, lane 1 and 2) or double
digested with EcoRI+PstI (data not shown). The construct carrying RFP
+DEBS1+TE was validated with PCR (Fig. 3 lane 3) and EcoRI+PstI double
digestion (data not shown). The results showed that all of the three
constructs were successfully created.
2. SDS-PAGE
DEBS1 is a large protein of 370kDa. We performed SDS-PAGE to confirm
the expression of the recombiant DEBS1+TE and DEBS1’+TE. However,
none of DEBS1+TE, DEBS1’+TE (data not shown) and RFP+DEBS1+TE (Fig.
4) could be detected after Coomassie blue staining.
Figure 4 SDS-PAGE of the recombinant protein RFP+DEBS1+TE.
M, protein size markers; RFP+DEBS1+TE(1-3), total proteins from RFP
+DEBS1+TE transformants; BL21, total protein from BL21.
3.RT-PCR validation on transcriptional level
After failure of detecting target proteins using SDS-PAGE, we used
RT-PCR to examine the expression of the target genes on
transcriptional level. The results were shown in Fig. 5. We used 16S
rRNA gene as an house keeping gene to compare the expression level of
target genes. The results showed that DEBS1 gene was successfully
expressed, albeit the transcription level was relatively low compared
with other target genes (acc, pcc and sfp) whose transcription are
controlled by T7 promoter as well. The low transcription level of
DEBS1 gene is in consistent with our SDS-PAGE results. This result
might due to the large size of DEBS1, which could hamper both the
transcriptional and translational efficiency.
4.Fluorescence microscopy analyses
To further confirm the expression of DEBS1, we monitored the
fluorescence of RFP under Zeiss LSM710 confocal microscope (Fig. 6).
The results showed that after excitation with lazer source, red
fluorescence was monitored in the RFP+DEBS1+TE transformant, while in
the BL21 strain, no fluorescence was detected. These results indicate
that RFP+DEBS1+TE was successfully expressed in the transformant.
Figure6: Results of fluorescence microscopy
5.UPLC-MS/MS Detection of TKL 1B
To test if RFP+DEBS1+TE was functionally expressed, the transformant
was grown in Luria Broth (LB) liquid medium and induced with IPTG.
After 48h of induction, cells were harvested and the supernatant was
used for the extraction of the product TKL1B. After extraction, the
samples were concentrated by 5 times and subjected into a triple
quadrupole mass spectrometry and monitored under an MRM mode using the
parent ion /product ion=173.1/155.1 channel. The results were shown in
Fig. 7. The retention time of the target product in the UPLC column
was 6.42 min, using water/methanol gradient elution protocol. We
monitored a strong response at m/z = 155.1 ion pair in the RFP
+DEBS1+TE transformant sample. The ion pair of 173.1/155.1 is specific
to the expected product TKL1B, and is in consistent with previous
studies. These results demonstrated that TKL1B was successfully
produced from the transformant.[4]
Conclusion
In this project, we realized the design by standardizing domains from the gene cluster of DEBSs. To our knowledge, it was the first time to assemble domains as individual units.
We performed separations of the coding sequence resulted in standardized domains and assembled these domains in correct order for generating our target product triketide lactone.[5] Evaluation of recombinant DEBS+TE expression was performed by RT-PCR analyses, fluorescence microscopy analyses, SDS-PAGE and final polyketide product was detected using Mass Spectrometry. Our results demonstrated that standardized domains could express correctly folded and posttranslationally modified modular PKSs, we concluded that domains in PKSs can work relatively independently. Furthermore, RFP may influence the function of protein, but in our project the product could be generated via BAP1 harboring plasmids with RFP-DEBS1-TE. Also, there is one scar (Thr-Arg) every two parts produced in every ligations because of RFC 23 .We had worried these additional amino acids may affect the expression of our synthetase. However, the complete construction with 20 additional amino acids of RFP-DEBS1-TE, expressed well from the IPTG-inducible promoter present in pSB1C3 in E. coli strain BAP1. According to these results, we demonstrated the compatibility as well as interchangeability between different standardized domains. [6]
Based on investigation of standardized domains coming from semi-
rational separation, the obtained results represented an important
milestone toward the ultimate goal of creating novel PKSs by
assembling standardized domains. [7]Additionally, these results showed
a new approach to generating triketide lactone, which can be an
important source of advanced intermediates of complex polyketides.[8]
References
[1] Keatinge-Clay, Adrian T. "The structures of type I polyketide synthases."Natural product reports 29.10 (2012): 1050-1073. [2] Menzella, Hugo G., John R. Carney, and Daniel V. Santi. "Rational design and assembly of synthetic trimodular polyketide synthases." Chemistry & biology 14.2 (2007): 143-151. [3]Pfeifer, Blaine A., et al. "Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli." Science 291.5509 (2001): 1790-1792. [4] Menzella, Hugo G., et al. "Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes." Nature biotechnology 23.9 (2005): 1171-1176. [5] Jiang, Ming, and Blaine A. Pfeifer. "Metabolic and pathway engineering to influence native and altered erythromycin production through E. coli." Metabolic engineering 19 (2013): 42-49. [6] Yan, John, et al. "Functional Modular Dissection of DEBS1-TE Changes Triketide Lactone Ratios and Provides Insight into Acyl Group Loading, Hydrolysis, and ACP Transfer." Biochemistry 51.46 (2012): 9333-9341. [7] Jiang, Ming, and Blaine A. Pfeifer. "Metabolic and pathway engineering to influence native and altered erythromycin production through E. coli." Metabolic engineering 19 (2013): 42-49. [8] Hughes, Diarmaid. "Exploiting genomics, genetics and chemistry to combat antibiotic resistance." Nature reviews genetics 4.6 (2003): 432-441.
Background
6-deoxyerythronolide B (6dEB), the macrocyclic core of the antibiotic erythromycin, is a complex product synthesized through the action of a multifunctional polyketide synthase (PKS) by the soil bacterium S.erythraea [4].
Therefore, the enzyme system, which is in charge of synthesizing 6dEB, is also called deoxyerythronolide B synthase (DEBS). The DEBS involves three polypeptide chains, including DEBS1, DEBS2, DEBS3, which have independent functions [6]. Correspondingly, the gene which codes DEBS, eryA, is divided into three, including eryAⅠ, eryAⅡ, eryAⅢ.
From the article of Pfeifer in 2001[4], it is feasible to synthesis and functional expression of the gene cluster eryA in E.coli, using the method which is mentioned in the article.
Now, let’s have a base understanding of DEBS [4].
DEBS1: containing Module 1 (KS-AT-KR-ACP) and Module 2 (KS-AT-KR-ACP)
DEBS2: containing Module 3 (KS-AT- ACP) and Module 4 (KS-AT-DH-ER-KR-ACP)
DEBS3: containing Module 5 (KS-AT-KR-ACP) and Module 6 (KS-AT-KR-ACP)
Besides, the whole PKS chain includes a Loading Domain on the N-terminus and a TE Domain (thioesterase) on the C-terminus.
From the previous description, we know that each polypeptide chain (DEBS) has two Modules, and each Module includes several domains, which have similar structure and function.
A module contains but not limits to three domains: KS, AT, ACP (please click here to get more information about domain). Each a module can catalyze an extension and the cyclization of a carbon chain [4].
Design
According to the design of our project PPS, we cannot make sure that we will make each domain as a standard part accurately. Maybe we will make the mistake that the function of some domains lose as we cut some necessary base pairs which we do not know. Therefore, we need to express the whole DEBS in E.coli functionally [5].
We choose PCR amplification to obtain the target gene segments. Base on the data of eryA we get from NCBI (the whole length of eryA is nearly 33kb), we have to use three different plasmids pSB1C3, pSB1A3 and pSB3K3 to carry eryAⅠ(11kb), eryAⅡ(11kb), eryAⅢ(9kb) as the carrying capacity of plasmid is limited.
Later, we will introduce all the three rebuilt plasmids into the host E.coli BAP1 and induce the functional expression of DEBS. If our design is OK, we will get the same product comparing with the experiment group, which uses combined standard domains to synthesize 6dEB.
Operation
First of all, we find the sequence of eryA gene from NCBI and complete the genome extraction of S.erythraea which will be used as the PCR template.
It seems that we will meet the challenge of PCR amplification for the GC-enriched (≥70%) and large DNA fragment (nearly 11kb).
The first time, we design the primer pairs commonly with RFC 10. Primer STAR [2] & GenSTAR are chosen as the DNA polymerase while 3% DMSO is added to decrease the annealing temperature.
However, we failed on the first try as we only got the 2kb fragment.
We tried again immediately by changing the PCR enzyme and conditions. We made the length of primer pairs longer to lower the high GC content of eryA. In addition to this, we done explore experiments about different concentration of DMSO from null to 10%
This time, we got nothing unfortunately.
Latter, we choose mutant-enriched PCR. Extending the length of our target segment, we redesigned the primer pairs without RFC 10. During this period of time, we tried Primer STAR, GenSTAR, PCR Mix and KOD PCR enzyme and compared three-step process with two-step process [1][3].
At last, we can see the 5kb segment from the Gel Electrophoresis, which still not what we wanted.
Finally, we had to give up the idea of amplification eryA gene through PCR.
It sounds a pity.
References
[1]Zhanghua He, Yang Wang, Bingyu Ye, Minglei Shi, Dong Wang, Qiusheng Fan, Fen Huang, and Zhihu Zhao. Reconstruction of Erythromycin Macrocyclic Lactone Synthesis Pathway in Escherichia coli [J]. Chinese Journal of Biotechnology, 2012, 28(2):222-232
[2]Lihua Zhang, Yang Wang, Zhanghua He, Xiaojie Liu, Minglei Shi, Jianyong He, Zhihu Zhao. Cloning and Expression of Polyketide Synthases Gene eryAⅢ of Saccharopolyspora erythraea in Escherichia coli [J]. Letters in Biotechnology, 2010
[3]Frey UH, Bachmann HS, Peters J, Siffert W. PCR-amplification of GC-rich regions:’ slowdown PCR’ [J]. Nat Protoc. 2008,3(8):1312-7
[4]Blaine A. Pfeifer, Suzanne J. Admiraal, Hugo Gramajo, David E. Cane, Chaitan Khosla. Biosythesis of Complex Polyketides in a Metabolically Engineered Strain of E.coli [J]. Science, 2001, 291(44): 1790-1792
[5]Hugo G. Menzella,Sarah J. Reisinger,Mark Welch,James T. Kealey,Jonathan Kennedy,Ralph Reid,Chau Q. Tran,Daniel V. Santi. Redesign, synthesis and functional expression of the 6-deoxyerythronolide B polyketide synthase gene cluster[J]. Journal of Industrial Microbiology & Biotechnology. 2006 (1)
[6] Menzella HG, Reisinger SJ, Welch M, Kealey JT, Kennedy J, Reid R, Tran CQ, Santi DV. Redesign, Synthesis and Functional Expression of the 6-deoxyerythronolide B polyketide synthase gene cluster [J]. Society for Industrial Microbiology Biotechnology. 2006 Jan;33(1):22-8