Team:Peking

From 2014.igem.org

(Difference between revisions)
Line 75: Line 75:
     <div class="subgroup">
     <div class="subgroup">
       <p class="subgroupl"> <strong><a href="https://2014.igem.org/Team:Peking/Killing" style="text-decoration: none;">Killing:</a></strong><br />
       <p class="subgroupl"> <strong><a href="https://2014.igem.org/Team:Peking/Killing" style="text-decoration: none;">Killing:</a></strong><br />
-
         To achieve the goal of killing we make use of hen egg lysozyme, which can cause the cleaving of the glycosidic in the cyanobacteria`s peptidoglycan, thus cause the lysis of cyanobacteria. Our hen egg lysozyme can be secreted successfully with the help of ABC transporter. Besides, our E.coli can express yfkE, a kind of lysozyme inhibitor, to protect it from lysis. </p>
+
         Killing the algae is the directly efficient way to reduce the algal bloom. Lysozyme was introduced to annihilate algae. The lysozyme could deconstruct the outer membrane of cyanobacteria and further lyse cyanobacteria. Lysozyme immune system was implemented to protect our genetically engineered E. coli. Our goal is to finally secrete lysozyme to kill algae without harming E. coli. </p>
     </div>
     </div>
     <div class="subgroupl">
     <div class="subgroupl">
       <p > <strong><a href="https://2014.igem.org/Team:Peking/KillingImprovements" style="text-decoration: none;" >Killing Improvements:</a></strong><br />
       <p > <strong><a href="https://2014.igem.org/Team:Peking/KillingImprovements" style="text-decoration: none;" >Killing Improvements:</a></strong><br />
-
We expressed a lectin of the cyanobacetria on the surface of our E. coli cells so that they can bind to the cyanobacteria. According to computational models, binding of E. coli to the cyanobacteria greatly enhances the killing efficiency of our project. We also equipped our E. coli with gas vesicles so that our project can be feasible in the real ecosystems.
+
A lectin of the cyanobacteria was expressed on the surface of our E. coli cells so that E. coli can bind to the cyanobacteria. The experimental results accorded with computational models, indicating that binding of E. coli to the cyanobacteria greatly enhances the killing efficiency of our project. We also equipped our E. coli with gas vesicles so that our project can be feasible in the real ecosystems.  
</p>
</p>
     </div>
     </div>
Line 86: Line 86:
   <div id="mid2right">
   <div id="mid2right">
     <div class="subgroupr">
     <div class="subgroupr">
-
       <p> <strong>This year Peking iGEM aims at dealing with the problem of water bloom with the tool of Synthetic Biology, to engineer bacterial that can restore the ecosystem, both reduce the algal biomass and degrade the toxin. </strong> </p>
+
       <p> <strong>This year, Peking iGEM aims at treating the problem of algal bloom with synthetic biological tools. Genetically engineered E. coli was implemented to both reduce the algal biomass and degrade the toxin. </strong> </p>
     </div>
     </div>
     <div class="subgroupr">
     <div class="subgroupr">
Line 95: Line 95:
     <div class="subgroupr">
     <div class="subgroupr">
       <p> <strong><a href="https://2014.igem.org/Team:Peking/Suicide" style="text-decoration: none;">Suicide :</a></strong><br />
       <p> <strong><a href="https://2014.igem.org/Team:Peking/Suicide" style="text-decoration: none;">Suicide :</a></strong><br />
-
In order to successfully solve the algal bloom, our team must put our engineered bacteria into the real ecosystems. If bacteria put into the real ecosystems are out of control, they may cause a lot of harm to local environment. So we must limit their life span and space they live in to a certain degree. One possible approach is that we artificially control their death. Therefore, we construct the suicide part to control the engineered bacteria using phage lysis system.
+
After killing algae and degrading toxin, the remaining bacteria should be eliminated or they would potentially cause negative effects to the environment. We constructed the suicide system using lysing system from phage, since E. coli should be controlled to commit suicide after accomplishing their mission.
  </p>
  </p>
     </div>
     </div>
Line 104: Line 104:
     <div class="subgroupl">
     <div class="subgroupl">
       <p> <strong><a>Modeling :</a></strong><br />
       <p> <strong><a>Modeling :</a></strong><br />
-
Our modelling focuses on supporting the whole project: doing numerical analysis and improving the applicability of ours design. We analysis Killing effect combined with Binding by using Monte Carlo simulation to optimize the project efficiency while minimize the cellular burden. We also develop phenomenological sound model for interpretation of gene expression by coupling cell physiological state, gene specific regulators and growth rate.
+
Our modeling focused on supporting the whole project. We used Monte Carlo simulation analyzed the enhancement of binding of E. coli to algae to the efficiency of killing. Another model about cellular burden was built to find optimal expressing efficiency. Furthermore, a macroscopic simulation that predicts the real situation would provide insight for the whole project.  
  </p>
  </p>
     </div>
     </div>
Line 112: Line 112:
     <div class="subgroupr">
     <div class="subgroupr">
       <p> <strong><a>Human Practice :</a></strong><br />
       <p> <strong><a>Human Practice :</a></strong><br />
-
        Algal blooms threaten the ecological integrity and sustainability of aquatic ecosystems, they can not only deplete oxygen upon bloom senescence thus being harmful to the phytoplankton, but also produce a variety of toxic secondary metabolites.
+
Investigation lies much beyond lab bench. Great insight would be discovered by in field study. We visited Taihu Lake, one of the biggest lake in China suffering algal bloom. We interviewed the researchers and acquire knowledge about algae in lake ecosystem. Besides, we dedicated to communicate with other teams. We also established iGEM Club in Peking University to popularize iGEM competition.  
-
        There are some methods to deal with water bloom, such as physical methods, chemical methods, and biological methods. They each offer their own advantages, but also have their own disadvantages as the following table shows. </p>
+
</p>
     </div>
     </div>
   </div>
   </div>

Revision as of 21:30, 17 October 2014

Harmful algal bloom

Widespread water bloom leads to extensive damage in ecosystems. Compared to physical or chemical methods, biological treatment for water bloom is less expensive and more environmentally friendly. Hence Peking iGEM is dedicated to constructing engineered microorganisms for the elimination of algae and recovery of ecosystems.

A specific antimicrobial peptide is secreted to disrupt the outer membrane of algae. In addition, we equip our transgenic cells with features that allow for buoyancy and attachment, making our project more efficient. During this process, an enzyme is also secreted to degrade a deleterious product of algae. After eradicating the algae, our engineered bacteria will commit suicide, and the ecosystem is finally restored.

This project is an innovative treatment for water bloom, and has potential applications in the field of ecosystem remediation.

Demo2 first
Peking iGEM Club 1: Promoting iGEM
Peking iGEM Club 2: Promoting iGEM
Demo2 first
Peking iGEM Club 1: Promoting iGEM
Peking iGEM Club 2: Promoting iGEM
Peking iGEM Club 2: Promoting iGEM

Killing:
Killing the algae is the directly efficient way to reduce the algal bloom. Lysozyme was introduced to annihilate algae. The lysozyme could deconstruct the outer membrane of cyanobacteria and further lyse cyanobacteria. Lysozyme immune system was implemented to protect our genetically engineered E. coli. Our goal is to finally secrete lysozyme to kill algae without harming E. coli.

Killing Improvements:
A lectin of the cyanobacteria was expressed on the surface of our E. coli cells so that E. coli can bind to the cyanobacteria. The experimental results accorded with computational models, indicating that binding of E. coli to the cyanobacteria greatly enhances the killing efficiency of our project. We also equipped our E. coli with gas vesicles so that our project can be feasible in the real ecosystems.

This year, Peking iGEM aims at treating the problem of algal bloom with synthetic biological tools. Genetically engineered E. coli was implemented to both reduce the algal biomass and degrade the toxin.

Degradation :
Microcystis aeruginosa is the most common cyanobacteria during algal bloom, and can secrete microcystin, a deadly toxin. To decrease the negative effects of the toxin on water ecosystems, we introduce an engineered bacteria that can secrete a microcystinase-mlrA protein to hydrolyze the toxin.

Suicide :
After killing algae and degrading toxin, the remaining bacteria should be eliminated or they would potentially cause negative effects to the environment. We constructed the suicide system using lysing system from phage, since E. coli should be controlled to commit suicide after accomplishing their mission.

Modeling :
Our modeling focused on supporting the whole project. We used Monte Carlo simulation analyzed the enhancement of binding of E. coli to algae to the efficiency of killing. Another model about cellular burden was built to find optimal expressing efficiency. Furthermore, a macroscopic simulation that predicts the real situation would provide insight for the whole project.

Human Practice :
Investigation lies much beyond lab bench. Great insight would be discovered by in field study. We visited Taihu Lake, one of the biggest lake in China suffering algal bloom. We interviewed the researchers and acquire knowledge about algae in lake ecosystem. Besides, we dedicated to communicate with other teams. We also established iGEM Club in Peking University to popularize iGEM competition.