Team:Tsinghua-A/Project

From 2014.igem.org

(Difference between revisions)
Line 5: Line 5:
<html>
<html>
<body>
<body>
-
 
-
 
-
 
-
 
    
    
    
    
-
      <section id="blog">
+
   
-
      <div class="container">
+
 
-
      <div class="row-fluid">
+
  <!--Content Section One-->
-
          <div class="span12">
+
    <section id="blog">
 +
    <div class="container">
 +
    <div class="row-fluid">
 +
        <div class="span12">
            
            
-
            <!--Bread Crumbs-->
+
          <!--Bread Crumbs-->
-
          <ul class="breadcrumb">
+
          <ul class="breadcrumb">
-
            <li><a href="https://2014.igem.org/Team:Tsinghua-A">Home</a> <span class="divider">/</span></li>
+
            <li><a href="#">Home</a> <span class="divider">/</span></li>
-
            <li class="active">Project</li>
+
            <li class="active">Human Practice</li>
-
          </ul>
+
          </ul>
-
          </div>
+
         </div>
         </div>
 +
      </div>
        
        
-
        <div class="row-fluid"
+
      <div class="row-fluid"
    
    
-
      <!--Blog Article Container-->
+
    <!--Blog Article Container-->
-
      <div class="span9 article-container">
+
    <div class="span9 article-container">
    
    
-
      <!--Article One -->
+
    <!--Article One -->
-
      <div class="row-fluid blog-article">
+
    <div class="row-fluid blog-article">
-
      <div class="span2 text-center">
+
    <div class="span2 text-center">
-
                  <div class="news-date">
+
                <div class="news-date">
-
                  <h3>1</h3>
+
                <h3>1</h3>
-
                  </div>
+
                 </div>
                 </div>
 +
              </div>
   
   
-
      <div class="span10">
+
    <div class="span10">
-
   
+
    <img src="https://static.igem.org/mediawiki/2014/8/8e/Tsinghua-A-humanpractice-overview.jpg"><br>
-
      <h2><b>Overview</b></h2>
+
    <h2><b>Overview</b></h2>
-
      <p><B>What is TAL effector?</B><br>
+
    <p>The team planned and implemented several events concerning the application and field of our project. We focused on fields including transgenesis and genetic therapy, where TALE has been widely used as gene editing tool.  Two of our teammates attended as guest lecturers a conference held for leaders in sci-tech education of High school and elementary level students in Beijing. Aside from publicity among high school students and educators, we held two seminars on synthetic biology and systems biology in Tsinghua University. Through heated discussions of the fields and our project itself, we managed to raise public awareness of novel advance in such interdisciplinary subjects. Multiple ethics issues were proposed during the seminars considering current topics in synthetic biology. We also conducted questionnaire survey on these issues later on. Results revealed important information and resolution on such. Ethics problems in genetic editing are researched and discussed in relevant pages.<br>
-
  TAL (transcription activator-like) effectors are proteins secreted by Xanthomonas bacteria via their type III secretion system when they infect various plant species. These proteins are able to bind promoter sequences in the host plant and to activate the expression of plant genes that aid bacterial infection.[1]<br><br>
+
-
  <B>What can TAL effectors do and how do they function?</B><br>
+
-
  There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence. [2]As a result, TAL effectors have attracted great interest as DNA targeting tools.<br><br>
+
-
  Their targeting specificity is determined by a central domain of tandem, 33–35 amino acid repeats, followed by a single truncated repeat of 20 amino acids. The majority of naturally occurring TAL effectors examined have between 12 and 27 full repeats. A polymorphic pair of adjacent residues at positions 12 and 13 in each repeat, the ‘repeat-variable di-residue’ (RVD), specifies the target, one RVD to one nucleotide, with the four most common RVDs each preferentially associating with one of the four bases.[3][4]
+
-
  <img src="https://static.igem.org/mediawiki/2014/b/bf/Tsinghua-A-project-overview.jpg" alt="Title"><br>
+
-
  Figure 1. Structure of a naturally occurring TAL effector[5]<br><br>
+
-
+
-
  <B>What’s the weakness of TAL effector?</B><br>
+
-
  This simple code between amino acids in TAL effectors and DNA bases in their target sites might be useful for protein engineering applications. Numerous groups have designed artificial TAL effectors capable of recognizing new DNA sequences in a variety of experimental systems. It has been reported that TAL effectors target genes efficiently in many eukaryocytic cells like mammalian cells and yeasts. However, the former experiments with E. coli indicate that TAL effectors don’t work well in E. coli cells.<br><br><br>
+
-
  <b>References</b><br>
+
-
  [1] Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 2010; 13: 394-401.<br>
+
-
  [2] Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 2010; 48: 419-436.<br>
+
-
  [3] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009; 326: 1501.<br>
+
-
  [4] Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009; 326:1509-1512.<br>
+
-
  [5] Tomas Cermak, Adam J. Bogdanove, and Daniel F. Voytas. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl. Acids Res. 2011; 39: 7879-7879
+
-
+
-
  </p><br />
+
-
      <hr>
+
</p><br />
-
      </div>
+
 
 +
    <hr>
 +
    </div>
   
   
-
      </div><!--End Article-->
+
  </div><!--End Article-->
-
   
+
        </div><!--End Blog Article Container-->
-
   
+
       
-
     
+
       
-
   
+
        <!--Right Side Bar-->
-
 
+
    <div class="span3 sidebar-container">
-
      </div><!--End Blog Article Container-->
+
    <h2><b>Our Team</b></h2>
-
   
+
    <p><img src="https://static.igem.org/mediawiki/2014/c/cb/Tsinghua-A-sidebar.jpg"></p>
-
   
+
    <br />
-
      <!--Right Side Bar-->
+
-
      <div class="span3 sidebar-container">
+
-
      <h2><B>Our Team</B></h2>
+
-
      <p><img src="https://static.igem.org/mediawiki/2014/c/cb/Tsinghua-A-sidebar.jpg"></p>
+
-
      <br />
+
    
    
    
    
  
  
-
    <h2><B>Links</B></h2>
+
  <h2><b>Links</b></h2>
-
    <ul class="unstyled blog-links">
+
  <ul class="unstyled blog-links">
-
        <li><a href="https://2014.igem.org"><i class="icon-angle-right"></i> iGEM 2014</a></li>
+
      <li><a href="https://2014.igem.org"><i class="icon-angle-right"></i> iGEM 2014</a></li>
-
        <li><a href="http://http://www.tsinghua.edu.cn/publish/newthuen/index.html"><i class="icon-angle-right"></i> Tsinghua University</a></li>
+
      <li><a href="http://http://www.tsinghua.edu.cn/publish/newthuen/index.html"><i class="icon-angle-right"></i> Tsinghua University</a></li>
-
        <li><a href="http://www.au.tsinghua.edu.cn/publish/auen/index.html"><i class="icon-angle-right"></i> Department of Automation,<br>Tsinghua University</a></li>
+
      <li><a href="http://www.au.tsinghua.edu.cn/publish/auen/index.html"><i class="icon-angle-right"></i> Department of Automation,<br>Tsinghua University</a></li>
-
        <li><a href="http://bioinfo.au.tsinghua.edu.cn/CSSB/web/english/index.html"><i class="icon-angle-right"></i> Center for Synthetic and Systems Biology,<br>Tsinghua University</a></li>
+
      <li><a href="http://bioinfo.au.tsinghua.edu.cn/CSSB/web/english/index.html"><i class="icon-angle-right"></i> Center for Synthetic and Systems Biology,<br>Tsinghua University</a></li>
-
    </ul>
+
  </ul>
  
  
-
    <hr>
+
  <hr>
  
  
  
  
-
      </div><!--End Span-->
+
    </div><!--End Span-->
 +
      </div>
 +
   
 +
  </section>
 +
   
 +
   
 +
    <!--Article Two -->
 +
   
 +
    <section id="lecture">
 +
    <div class="container">
 +
          <div class="row-fluid">
 +
                <div class="span12">
 +
         
 +
              <!--Bread Crumbs-->
 +
         
 +
                </div>
 +
              </div>
 +
     
 +
              <div class="row-fluid"
    
    
-
      </div>
+
    <!--Blog Article Container-->
-
      </div>
+
        <div class="span9 article-container">
-
      </section>
+
        <div class="row-fluid blog-article">
-
 
+
        <div class="span2 text-center">
-
 
+
                  <div class="news-date">
-
+
                    <h3>2</h3>
-
+
                  </div>
-
+
                  </div>
-
+
   
-
+
        <div class="span10">
-
+
        <img src="https://static.igem.org/mediawiki/2014/0/0e/Tsinghua-A-lecture1.jpg"><br>
-
 
+
        <h2><b>Lecture</b></h2>
-
  <!--Content Section One-->
+
        <p>On Sep. 9th, Xu Chumeng and Liu Huarui gave a lecture on our project and current topics in synthetic biology as part of the conference for leaders in sci-tech education of High school and elementary school students in Beijing.  Teachers, high school students and researchers on Bioinformatics, Heredity, Molecular Biology and Botany gathered in Beijing No.8 Middle School aiming at enacting educational plans on science and technology research for high school and elementary level students. <br><br>
-
    <section id="Hypothesis">
+
After presenting our project, Chumeng, as an alumna of Beijing No.8 Middle School, shared her experience on high school sci-tech research experience and how it had led to synthetic biology research in Tsinghua.  We received a lot of useful insights on our projects from attending researchers.  An overview on the current topics in synthetic biology and its applications was delivered by our two teammates.  We found that interdisciplinary subjects like synthetic biology still lack awareness among students below collegiate level and their educators.  The high school students present at the conference showed keen interest in the topics, even raised a few issues worthy of consideration such as novel application of gene editing, “crazy” but creative ideas in the field of synthetic biology.<br><br>
-
    <div class="container">
+
<img src="https://static.igem.org/mediawiki/2014/f/fa/Tsinghua-A-lecture2.jpg"><br>
 +
</p><br />
 +
   
 +
    <hr>
 +
        </div>
 +
   
 +
        </div><!--End Article--> 
 +
      </div>
 +
        </div>
 +
    </section>
 +
   
 +
   
 +
    <!--Article Three -->
 +
    <section id="seminars">
 +
    <div class="container">
     <div class="row-fluid">
     <div class="row-fluid">
         <div class="span12">
         <div class="span12">
Line 120: Line 131:
     <!--Blog Article Container-->
     <!--Blog Article Container-->
     <div class="span9 article-container">
     <div class="span9 article-container">
-
   
 
-
   
 
-
    <!--Article Two -->
 
     <div class="row-fluid blog-article">
     <div class="row-fluid blog-article">
    <div class="span2 text-center">
    <div class="span2 text-center">
                 <div class="news-date">
                 <div class="news-date">
-
                 <h3>2</h3>
+
                 <h3>3</h3>
                 </div>
                 </div>
               </div>
               </div>
Line 132: Line 140:
    <div class="span10">
    <div class="span10">
   
   
-
    <h2><b>Hypothesis</b></h2>
+
    <h2><b>Seminars</b></h2>
-
    <p>It has been reported that TAL effectors target genes efficiently in many eukaryocytes like mammalian cells and yeasts. However, the former experiments with E. coli indicate that TAL effectors don’t work well in E. coli cells. There are a variety of factors can possibly be attributed to its low efficiency, and homologous recombination is a highly possible one.<br><br>
+
    <p>On Oct. 11th. Our team held a seminar in collaboration with team
-
Some proteins originated from prokaryocytes, with their sequences paralleling with DNA sequences of E. coli, their expression might be hampered because of homologous recombination. By parity of reasoning, we propose a hypothesis that the inefficiency of TAL effector expression is caused by its sequence resemblance with E. coli genes.<br><br>
+
<a class="more" href="https://2014.igem.org/Team:Tsinghua">Tsinghua</a>. We introduced our iGEM project to the undergraduates from school of life science and had heated discussion on synthetic biology, systems biology and bioinformatics. Our introduction of interdisciplinary subjects was attractive, and we even successfully persuaded the scholars to join iGEM in the next year.
-
Our solution is based on the codon usage bias, which refers to differences in the frequency of occurrence of synonymous codons in coding DNA.[1] The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism.[2]<br>
+
<img src="https://static.igem.org/mediawiki/2014/a/a9/Tsinghua-A-xy.jpg" alt="Title"><br><br>
-
<img src="https://static.igem.org/mediawiki/2014/4/4a/Tsinghua-A-condon.jpg" alt="Title"><br>
+
<img src="https://static.igem.org/mediawiki/2014/1/18/Tsinghua-A-eamon.JPG" alt="Title"><br><br>
-
Figure 1. RNA codon table[3]<br><br>
+
We also held a seminar in our own department on Oct. 12th.<br>
-
 
+
<img src="https://static.igem.org/mediawiki/2014/f/f9/Tsinghua-A-hp1.jpg" alt="Title">
-
<b>References</b><br>
+
-
[1] Susanta K. Behura* and David W. Severson, Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biological Review. 2012; 88: 49-61<br>
+
-
[2] Lanza, Amanda M.; Curran, Kathleen A.; Rey, Lindsey G.; et al. A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Systems Biology. 2014; 8: 33. <br>
+
-
[3] http://bioinfo.bisr.res.in/cgi-bin/project/crat/theory_codon_restriction.cgi
+
-
 
+
-
 
+
</p><br />
</p><br />
 +
   
   
   
    <hr>
    <hr>
    </div>
    </div>
-
   
+
    </div>
-
    </div><!--End Article-->
+
    </div>
 +
    </div><!--End Article-->  
 +
    </section>
    
    
-
 
    
    
    
    
-
 
 
-
    </div><!--End Blog Article Container-->
 
-
    </div>
 
-
    </div>
 
-
    </section>
 
-
 
 
-
 
 
-
 
 
-
      <section id="TALEAssembly">
 
-
      <div class="container">
 
-
      <div class="row-fluid">
 
-
          <div class="span12">
 
-
         
 
-
            <!--Bread Crumbs-->
 
-
          </div>
+
<!--Article Four -->
-
        </div>
+
          <section id="Survey">
-
     
+
          <div class="container">
-
        <div class="row-fluid"
+
    <div class="row-fluid">
-
   
+
        <div class="span12">
-
      <!--Blog Article Container-->
+
         
-
      <div class="span9 article-container">
+
          <!--Bread Crumbs-->
-
   
+
-
   
+
-
     
+
-
   
+
-
      <!--Article Three -->
+
-
      <div class="row-fluid blog-article">
+
-
      <div class="span2 text-center">
+
-
                  <div class="news-date">
+
-
                  <h3>3</h3>
+
-
                  </div>
+
-
                </div>
+
-
   
+
-
      <div class="span10">
+
-
   
+
-
      <h2><b>TALE Assembly</b></h2>
+
-
      <p>The TALE assembly strategy uses the Golden Gate cloning method, which is based on the ability of type IIS enzymes to cleave outside of their recognition site. When type IIS recognition sites are placed to the far 5’ and 3’ end of any DNA fragment in inverse orientation, they are removed in the cleavage process, allowing two DNA fragments flanked by compatible sequence overhangs, termed fusion sites, to be ligated seamlessly. Since type IIS fusion sites can be designed to have different sequences, directional assembly of multiple DNA fragments is feasible. Using this strategy, DNA fragments can be assembled from undigested input plasmids in a one-pot reaction with high efficiency.<br><br>
+
-
  We chose the native TALE AvrBs3  as a scaffold for customized assembly of TALE constructs. The central DNA binding domain of AvrBs3 is formed by 17.5 tandemly arranged 34 amino acid repeats, with the last half repeat showing similarity to only the first 20 amino acids of a full repeat. To reduce the risk of recombination events between the 17.5 highly homologous repeat sequences which is mentioned in the hypothesis part, we codon-optimized AvrBs3 applying the codon usage.<br><br>
+
-
  In a single Golden Gate cloning reaction, cloning efficiency is significantly reduced for assembly of 17 repeat modules. Therefore, we split the assembly in two successive steps. In the first cloning step, 10 repeats were assembled in one vector. The preassembly vectors confer spectinomycin resistance and encode a lacZ-α fragment for blue/white selection. On both sides of the lacZ-α fragment a type IIS recognition sequence, BsaI, was positioned. Similarly, 11~17 repeats and NG-last-repeat were respectively ligated and inserted into another vector. After preassembly of the 10 and 7 and last repeats using BsaI, the intermediate blocks were released via Esp3I and cloned into the final assembly vector (modified pTAL1). As is explained in the backbone part, we constructed a backbone with constitutive promoter which can express under normal condition, and another with a tetracycline-induced promoter, which is expressed with tet. Modified pTAL1 confers AmpR, and allows plasmid replication in E.coli. The vector pTAL1 also contains all elements of the final TALE expression construct, including TALE N’ and C’ arms, replication origin, etc., but a lacZ-α in between the left and right arms. <br><br>
+
-
  During the construction of wild-type control plasmid, we used the modified modules provided by our lab. In order to confirm our hypothesis, the designer TALEs were oligo-synthesized according to the results given by optimizing algorithm. We reserved the fusion sites for golden gate reaction, and broke each repeats into 2 parts. After annealing in PCR amplifier, the linear sequence of the repeats can be added to the golden gate reaction and be ligated with the primary vector and continue further ligation to accomplish the final construction. <br><br>
+
-
  <img src="https://static.igem.org/mediawiki/2014/1/14/Tsinghua-A-assembly.jpg" alt="Title"><br><br>
+
-
  <b>Reference</b><br>
+
-
    http://www.ncbi.nlm.nih.gov/nuccore/NG_034463.1
+
-
  </p><br />
+
-
   
+
-
   
+
-
      <hr>
+
-
      </div>
+
-
   
+
-
      </div><!--End Article-->
+
-
 
+
-
 
+
-
      </div><!--End Blog Article Container-->
+
-
      </div>
+
-
      </div>
+
-
      </section>
+
-
 
+
-
 
+
-
      <section id="TALEExpression">
+
-
      <div class="container">
+
-
      <div class="row-fluid">
+
-
          <div class="span12">
+
            
            
-
            <!--Bread Crumbs-->
 
-
 
-
          </div>
 
         </div>
         </div>
 +
      </div>
        
        
-
        <div class="row-fluid"
+
      <div class="row-fluid"
    
    
-
      <!--Blog Article Container-->
+
    <!--Blog Article Container-->
-
      <div class="span9 article-container">
+
    <div class="span9 article-container">
-
    
+
     <div class="row-fluid blog-article">
-
   
+
    <div class="span2 text-center">
-
 
+
                <div class="news-date">
-
 
+
                <h3>4</h3>
-
  <!--Article Four -->
+
-
      <div class="row-fluid blog-article">
+
-
      <div class="span2 text-center">
+
-
                  <div class="news-date">
+
-
                  <h3>4</h3>
+
-
                  </div>
+
                 </div>
                 </div>
 +
              </div>
   
   
-
      <div class="span10">
+
    <div class="span10">
 +
    <img src="img/blog3.png" alt="Title">
 +
    <h2><b>Survey</b></h2>
 +
    <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.</p><br />
   
   
-
      <h2><b>TALE Expression</b></h2>
 
-
      <p><b>Background – pTAL1 vector</b><br>
 
-
  Based on the fact that Golden Gate is an effective way to assembly TALE (Transcription activator-like effectors) and various eukaryotic expression systems have been established but few in prokaryotic systems, we are determined to construct such efficient expression system in Esherichia coli so that we can test our brilliant idea. Through referring to numbers of paper, we find that most scientists choose to construct stable cell line via homologous arm such as attL1 and attL2 or they just introduce exogenous TALE[1].  Considering the principle of Golden Gate Assembly, we only need to reconstruct the final vector pTAL1 (figure 1) to solve this problem. The vector pTAL1 contains TALE N-terminal, TALE C-terminal, lacZ for blue white scanning and attL1, attL2 homologous arm. However, it lacks necessary elements for prokaryotic creature such as promoter, RBS and terminator. Here comes to our story of establish a TALE expression system in prokaryotic creature.<br><br>
 
-
  <img src="https://static.igem.org/mediawiki/2014/7/79/Tsinghua-A-pTAL1.jpg" alt="Title"><br>
 
-
  Figure 1. The original vector pTAL1<br><br>
 
-
  <b>Constitutive pTAL</b><br>
 
-
  Wisely, we choose 3A assembly (http://parts.igem.org/Help:Assembly/3A_Assembly) to construct our expression system. Firstly, we design forward and reverse primers with extension on which contains EcoRI, XbaI and SpeI, PstI restriction enzyme sites to get PCR prodcuts of pTAL. Then through naïve enzyme digestion and liagtion we can ligate pTAL with terminator, promoter and RBS one by one. And finally, we can easily get our constitutive TALE expression vector (Figure 2). And we also submit this expression vector as K1311003 (<a class="more" href="http://parts.igem.org/Part:BBa_K1311003:Design">http://parts.igem.org/Part:BBa_K1311003:Design</a>) in part.igem.org.<br><br>
 
-
  <b>Regulative pTAL</b><br>
 
-
  Similar to the method of constitutive construction, we make use of the ligated pTAL with terminator to continue our regulative pTAL construction. After browsing on the igem parts website (http://parts.igem.org/Main_Page), we find that there is no ideal regulatory parts that can be directly applied. We need to make use of some parts to get our ideal composite regulatory parts. Based on parts C0040 (http://parts.igem.org/Part:BBa_C0040), we added promoter and RBS (K081005, http://parts.igem.org/Part:BBa_K081005), terminator (B0015, http://parts.igem.org/Part:BBa_B0015), pTet (TetR repressible promoter, R0040, http://parts.igem.org/Part:BBa_R0040) and RBS one by one via 3A assembly. Similarly, we insert this large fragment into the upstream of the ligated pTAL with terminator (Figure 2). Eventually, we successfully reconstruct regulative pTAL and offer 3 our own parts this year. One is regulative pTAL (K1311004, <a class="more" href="http://parts.igem.org/Part:BBa_K1311004:Design">http://parts.igem.org/Part:BBa_K1311004:Design</a>); one is K1311005 (<a class="more" href="http://parts.igem.org/Part:BBa_K1311005:Design">http://parts.igem.org/Part:BBa_K1311005:Design</a>) and the other is K1311006 (<a class="more" href="http://parts.igem.org/Part:BBa_K1311006:Design">http://parts.igem.org/Part:BBa_K1311006:Design</a>). <br><br>
 
-
  <img src="https://static.igem.org/mediawiki/2014/7/77/Tsinghua-A-workflow.jpg" alt="Title">
 
-
 
-
 
-
 
-
  </p><br />
 
   
   
-
   
+
    <hr>
-
      <hr>
+
    </div>
-
      </div>
+
    </div>
-
   
+
    </div>    
-
      </div><!--End Article-->
+
     </div><!--End Article-->
-
+
    </section>
-
    
+
   
-
 
+
   
-
      </div><!--End Blog Article Container-->
+
   
-
      </div>
+
<!--Article Five -->
-
      </div>
+
      <section id="ethics">
-
      </section>
+
      <div class="container">
-
 
+
    <div class="row-fluid">
-
 
+
        <div class="span12">
-
      <section id="ReportSystem">
+
         
-
      <div class="container">
+
          <!--Bread Crumbs-->
-
      <div class="row-fluid">
+
-
          <div class="span12">
+
            
            
-
            <!--Bread Crumbs-->
 
-
 
-
          </div>
 
         </div>
         </div>
 +
      </div>
        
        
-
        <div class="row-fluid"
+
      <div class="row-fluid"
    
    
-
      <!--Blog Article Container-->
+
    <!--Blog Article Container-->
-
      <div class="span9 article-container">
+
    <div class="span9 article-container">
-
    
+
     <div class="row-fluid blog-article">
-
   
+
    <div class="span2 text-center">
-
 
+
                <div class="news-date">
-
 
+
                <h3>5</h3>
-
 
+
-
   
+
-
  <!--Article Five -->
+
-
      <div class="row-fluid blog-article">
+
-
      <div class="span2 text-center">
+
-
                  <div class="news-date">
+
-
                  <h3>5</h3>
+
-
                  </div>
+
                 </div>
                 </div>
 +
              </div>
   
   
-
      <div class="span10">
+
    <div class="span10">
   
   
-
      <h2><b>Report System</b></h2>
+
    <h2><b>Ethics</b></h2>
-
      <p>We construct a report system so as to test the reliability and efficiency of our ‘Marvelous TALE’. In this section, we test the TALE’s DNA binding ability and report it with a common report gene ‘RFP’. We attempt to put the target of TALE’s DNA binding target sequence inside the expression cassette of report gene and binding TALE can disrupt the express of report gene. We use iGEM standard parts to build our report system.<br><br>
+
    <p>Genetic editing and genetic therapy (especially those involving transgenesis), key applications of TALE, raise several noticeable ethics problems (listed below).<br>
 +
1.  In regard of current lacking of legal treaty on such issues, uncontrolled access to such technologies may cause unpredictable chaos.<br><br>
 +
2.  Experiments conducted on genetic therapy may pose threat to human life.<br><br>
 +
3.  Transgenesis and genetic modifying may have long-term effects on the environment<br><br>
 +
4. It might be hard to set the boundaries between species with gene editing taken into consideration.<br><br>
 +
5.  Transgenesis may have negative influence on animal welfare.<br>
-
  We designed a standard iGEM part BBa_K1311007 to complete all the tasks. This part contains<br>
+
</p><br />
-
  Promoter (J23102)-TALE binding site (repeats three times)-RBS-LacI coding sequence-Terminator(B0015)-LacI Regulative Promoter(R0010)-RBS(B0034)-mRFP1(E1010)-Terminator(B0015)<br>
+
-
  <img src="https://static.igem.org/mediawiki/2014/c/c1/Reportsystem3tsinghuaa.jpg" alt="Title"><br>
+
-
  This part can convert the binding ability of TALE protein to its target DNA sequence to an easier available parameter, the florescent intensity of RFP. When the TALE protein is expressed, the TALE make binds to its target, which may interrupt the transcription of LacI. The lack of repressors may lead to the expression of RFP. So the stronger florescent intensity means the better binding ability of TALE protein. In this part, the target of TALE recognition site is chosen to be the 18bp sequence (ACCTCATCAGGAACATGTT).<br><br>
+
-
  <b>Our Circuit Design</b><br>
+
-
  <img src="https://static.igem.org/mediawiki/2014/3/3a/%E6%9C%AA%E6%A0%87%E9%A2%98-1tsinghuaa.jpg" alt="Title"><br>
+
-
  This parts can convert the binding ability of TALE protein to its target DNA sequence to a easier available parameter, the florescent intensity of RFP. When the TALE protein is expressed, the TALE make binds to its target, which may interrupt the transcription of LacI. The lack of repressors may lead to the expression of RFP. So the stronger florescent intensity means the better binding ability of TALE protein. <br><br>
+
-
  <b>Validation</b><br>
+
-
  We change the normal RBS sequence in the LacI coding sequence into an RBS containing three tandem TALE binding site sequences. So we have to validate that the LacI protein can express normally and can normally inhibit the expression of RFP.<br>
+
-
  We transformed this plasmid in to E.coli DH5α with electroporation and chemical transformation. We spread the plate and culture it in 37 degrees Centigrade for more than 15 hours until small colonies can be seen in the plate. At this moment, the colonies might look red for the sake of the delay of expression of LacI. We picked colonies into the 10mL tubes and added 5mL LB broth with Chl antibiotics. <br>After six hours’ shaking at 37 degrees Centigrade and 220 rpm, we got the tubes out and double, four times, eight times diluted. (40μL of 0.1M IPTG was added as the positive control group) After another shaking for 12h, florescence of the bacteria was evaluated with an enzyme-labeled instrument and OD600 was tested with spectrometry.<br><br>
+
-
  <b>Picture of our tubes </b><br><br>
+
-
  <img src="https://static.igem.org/mediawiki/2014/b/b1/TsinghuaaParts1.jpg" alt="Title"><br>
+
-
  (The two red ones on the back are the positive control groups, others are not red)<br><br>
+
-
  <img src="https://static.igem.org/mediawiki/2014/d/d9/Reportfigure_TsinghuaA.jpg" alt="Title"><br>
+
-
Figures about the OD600 and Flurescence Intensity of the broth after 12h shaking<br><br>
+
-
+
-
The first column with IPTG as positive control. The FI of the positive control is much higher than the others, which means our LacI works normally.
+
-
 
+
-
  </p><br />
+
   
   
-
      <hr>
+
    <hr>
-
      </div>
+
    </div>
 +
    </div>
 +
    </div>
   
   
-
      </div><!--End Article-->
+
    </div><!--End Article-->
 +
    </section>
    
    
    
    
   
   
-
      </div><!--End Blog Article Container-->
+
    <!--End Blog Article Container-->
-
      </div>
+
   
-
      </div>
+
   
-
      </section>
+
   
 +
   
 +
   
    
    
    
    
-
 
+
-
 
+
 
-
    </body>
+
</body>
</html>
</html>
 +
 +
{{Team:Tsinghua-A/Footer}}
{{Team:Tsinghua-A/Footer}}
{{Team:Tsinghua-A/Script}}
{{Team:Tsinghua-A/Script}}

Revision as of 21:04, 17 October 2014

1


Overview

The team planned and implemented several events concerning the application and field of our project. We focused on fields including transgenesis and genetic therapy, where TALE has been widely used as gene editing tool. Two of our teammates attended as guest lecturers a conference held for leaders in sci-tech education of High school and elementary level students in Beijing. Aside from publicity among high school students and educators, we held two seminars on synthetic biology and systems biology in Tsinghua University. Through heated discussions of the fields and our project itself, we managed to raise public awareness of novel advance in such interdisciplinary subjects. Multiple ethics issues were proposed during the seminars considering current topics in synthetic biology. We also conducted questionnaire survey on these issues later on. Results revealed important information and resolution on such. Ethics problems in genetic editing are researched and discussed in relevant pages.



2


Lecture

On Sep. 9th, Xu Chumeng and Liu Huarui gave a lecture on our project and current topics in synthetic biology as part of the conference for leaders in sci-tech education of High school and elementary school students in Beijing. Teachers, high school students and researchers on Bioinformatics, Heredity, Molecular Biology and Botany gathered in Beijing No.8 Middle School aiming at enacting educational plans on science and technology research for high school and elementary level students.

After presenting our project, Chumeng, as an alumna of Beijing No.8 Middle School, shared her experience on high school sci-tech research experience and how it had led to synthetic biology research in Tsinghua. We received a lot of useful insights on our projects from attending researchers. An overview on the current topics in synthetic biology and its applications was delivered by our two teammates. We found that interdisciplinary subjects like synthetic biology still lack awareness among students below collegiate level and their educators. The high school students present at the conference showed keen interest in the topics, even raised a few issues worthy of consideration such as novel application of gene editing, “crazy” but creative ideas in the field of synthetic biology.




3

Seminars

On Oct. 11th. Our team held a seminar in collaboration with team Tsinghua. We introduced our iGEM project to the undergraduates from school of life science and had heated discussion on synthetic biology, systems biology and bioinformatics. Our introduction of interdisciplinary subjects was attractive, and we even successfully persuaded the scholars to join iGEM in the next year. Title

Title

We also held a seminar in our own department on Oct. 12th.
Title



4

Title

Survey

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.



5

Ethics

Genetic editing and genetic therapy (especially those involving transgenesis), key applications of TALE, raise several noticeable ethics problems (listed below).
1. In regard of current lacking of legal treaty on such issues, uncontrolled access to such technologies may cause unpredictable chaos.

2. Experiments conducted on genetic therapy may pose threat to human life.

3. Transgenesis and genetic modifying may have long-term effects on the environment

4. It might be hard to set the boundaries between species with gene editing taken into consideration.

5. Transgenesis may have negative influence on animal welfare.