Nickel(II) chelation was evaluated in a CsgA- MG1655 background (in order to have only our modified or unmodified curlis at the surface of the strain) for each of the constructions (BBa_K1404006, BBa_K1404007,or BBa_K1404008). Dimethylglyoxime (DMG) was used as a complexing reagent, which forms a pink-colored complex (peak absorption at 554nm) in the presence of Ni(II).
Firstly, a calibration curve of the formation Nickel and DMG complexes was established.
Then, strains were assayed for biofilm nickel absorption on liquid cultures using the calibration curve, b measuring the OD of the complex formed for each strain at 554nm.
Although quantification is possible, this technique lacks precision and is more suited for qualitative studies. However, it is a cheaper alternative to mass spectrometry.
Nickel-DMG complex colorimetry measurement follows a linear regression from a concentration of 20uM to 100uM, linked to the gradient from transparency (at [20uM]) to pink (at [100uM]). This visual method allows us to compare the Ni chelation between our strains. The more pale the color is, the more Ni has been chelated. The culture supernatant of CsgA- bacteria from strain with the part BBa_K1404008 is less colored than the others, which shows that only this part allows to capture more nickel.
These results show that the part BBa_K1404008 confers increased chelation to strain CsgA-. It is shown that it chelates more than part BBa_K1404006 and part BBa_K1404007.
A second method has been used, more quantitative and more precise (but more expensive) : mass spectrometry . The metal content of the bacterial pellets were assayed. The quantity of chelated nickel for each strain has been compared to the quantity of curlis formed by each strain.
Significant differences are indicated using lowercase letters, and different letters indicate significant differences (Tukey’s test, p < 0.05). Error bars represent standard deviations.
Taken together, these results show that the CsgA- Strain with part BBa_K1404008 chelates twice more than strain CsgA- with part BBa_K1404007. That means that only two His-tags on C-term can improve the natural nickel chelation capacities of CsgA . CsgA with a single His-tag did not perform better than a wild-type CsgA. Potentially, further increasing the amount of His-tags could improve the nickel accumulation capacities of CsgA.