Team:UCL/Science/Bioprocessing
From 2014.igem.org
Line 73: | Line 73: | ||
<!--- Content start---> | <!--- Content start---> | ||
- | <div class="SCJMFHIGHLIGHT"> | + | <div class="SCJMFHIGHLIGHT"><p> |
- | <p><b>Flow sheet for the conventional unit operations involved in the primary and secondary treatment of cotton textile mill effluents.</b> | + | <b>Flow sheet for the conventional unit operations involved in the primary and secondary treatment of cotton textile mill effluents.</b> |
<br> | <br> | ||
<img src="https://static.igem.org/mediawiki/2014/7/72/Current_process.png" style="float:right;margin:0 0 0 10px;" width="40%"> | <img src="https://static.igem.org/mediawiki/2014/7/72/Current_process.png" style="float:right;margin:0 0 0 10px;" width="40%"> | ||
- | <br>In their investigation of textile processing technology, both conventional and novel, Babu et al. have emphasized the importance of waste minimization in terms of pollution load and production costs. | + | <br> |
+ | In their investigation of textile processing technology, both conventional and novel, Babu et al. have emphasized the importance of waste minimization in terms of pollution load and production costs. | ||
<br> | <br> | ||
<b>“According to the EIPRO study, clothing alone is responsible for 2 to 10% of the EU’s life-cycle environmental impacts. This results in textiles coming fourth in the ranking of product category which cause the greatest environmental impact”(1)</b> | <b>“According to the EIPRO study, clothing alone is responsible for 2 to 10% of the EU’s life-cycle environmental impacts. This results in textiles coming fourth in the ranking of product category which cause the greatest environmental impact”(1)</b> | ||
+ | <br><br> | ||
+ | The carcinogenic properties of Azodye precursors and degradation products (such as aromatic amines are exacerbated by the low susceptibility for azodye bio-degradation under aerobic conditions, stressing an existing environmental burden on fresh water resources, reaching 20% in 2010 (2). | ||
<br> | <br> | ||
- | + | Furthermore, growing concerns regarding water consumption in textile processes due to astronomical usage of ‘potable industrial water’(6). According to the 2010 global market report on sustainable textiles, the world used three trillion gallons of fresh water to produce 60 billion kilograms of fabric. With over 80000 tonnes of reactive dyes produced and consumed each year, the heavily polluted dye baths issuing off the dyeing processes need to be treated before any reuse can be conceived(2). One such conventional method is the used of traditional large-scale membrane processes and coagulation. Implementing a water recycle strategy for a textile plant would require in-plant treatment processes(6). | |
- | + | </p></div> | |
- | Furthermore, growing concerns regarding water consumption in textile processes due to astronomical usage of ‘potable industrial water’(6). According to the 2010 global market report on sustainable textiles, the world used three trillion gallons of fresh water to produce 60 billion kilograms of fabric. With over 80000 tonnes of reactive dyes produced and consumed each year, the heavily polluted dye baths issuing off the dyeing processes need to be treated before any reuse can be conceived(2). One such conventional method is the used of traditional large-scale membrane processes and coagulation. Implementing a water recycle strategy for a textile plant would require in-plant treatment processes(6).</p> | + | |
- | </div> | + | |
<!--- Content end---> | <!--- Content end---> | ||
Line 90: | Line 91: | ||
<!--------- This is the end of the expanding box--------> | <!--------- This is the end of the expanding box--------> | ||
+ | <br><br> | ||
- | |||
- | |||
<!---Gallery Slider START---> | <!---Gallery Slider START---> | ||
<div class="gallerycontainer"> | <div class="gallerycontainer"> | ||
Line 100: | Line 100: | ||
<img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/1/18/UCL_plant_1.jpg" alt=""> | <img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/1/18/UCL_plant_1.jpg" alt=""> | ||
<img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/1/16/Processucl.png" alt=""> | <img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/1/16/Processucl.png" alt=""> | ||
- | <img style="width: | + | <img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/5/56/UCL_bioprocessing.jpg " alt=""> |
<img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/e/e2/Uclbiopro.PNG" alt=""> | <img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/e/e2/Uclbiopro.PNG" alt=""> | ||
<img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/5/53/B3.PNG" alt=""> | <img style="width: 100px; visibility: hidden; display: inline;" src="https://static.igem.org/mediawiki/2014/5/53/B3.PNG" alt=""> | ||
Line 111: | Line 111: | ||
</div> | </div> | ||
<!---Gallery Slider END---> | <!---Gallery Slider END---> | ||
+ | |||
<br> | <br> | ||
+ | |||
<!-------- This is the beginning of the expanding box--------> | <!-------- This is the beginning of the expanding box--------> | ||
<div class="collapse-card"><div class="title"> | <div class="collapse-card"><div class="title"> | ||
Line 129: | Line 131: | ||
</div></div> | </div></div> | ||
<!--------- This is the end of the expanding box--------> | <!--------- This is the end of the expanding box--------> | ||
- | |||
+ | |||
+ | </div> | ||
<!--This is the second section--> | <!--This is the second section--> | ||
<div style="display: none;" id="view2"> | <div style="display: none;" id="view2"> |
Revision as of 16:24, 17 October 2014
Challenges in the textile industry
The global production of dyestuff amounts to over millions of tons per year. Azodyes represent two thirds of this value, a majority of which find their way to wastewater effluent streams. Characterized by the presence of one or more azo group (more), this type of organic colorant is also found in cosmetics, pharmaceuticals and food industries. While azodyes are a dye-class of choice in the textile industry, their global consumption is taking a toll on the environment.
Conventional textile effluent treatment process
The considerable structural diversity and recalcitrant nature of Azodyes make traditional wastewater treatment technologies markedly ineffective. Hence there exists an array of methods that deal with the removal of synthetic dyes from dyestuff-rich effluents, in order to reduce their environmental impact. These include large-scale physio-chemical processes outlined in the flow sheet below and a variety of organic/inorganic-support based adsorption and photocatalytic and oxidative decolorization. The latter are however more recent methods that are currently too expensive and not scalable to production scales.
General process flowsheet for a wastewater treatment plant |
Screening – ‘separation of particles on the basis of size i.e. removing dyeing process debris which may damage equipement’ Equalization – ‘Reducing the variability in composition of textile waste prior to treatment’ Neutralization: pH control – ‘Reduce downstream consumption of chemicals for used in the physiochemical stages i.e. coagulation and flocculation’ Coagulation – ‘Used to remove waste materials in suspended or colloidal form’ Flocculation – ‘Converts finely divided suspended solids into larger particles so that efficient, rapid settling can occur’ Primary treatment – ‘gravity seperation/clarification/sedimentation unit to separate larger solid particles Secondary treatment – ‘removing/reducing concentration of organic and inorganic compounds through microbial decomposition’ |
Flow sheet for the conventional unit operations involved in the primary and secondary treatment of cotton textile mill effluents.
In their investigation of textile processing technology, both conventional and novel, Babu et al. have emphasized the importance of waste minimization in terms of pollution load and production costs.
“According to the EIPRO study, clothing alone is responsible for 2 to 10% of the EU’s life-cycle environmental impacts. This results in textiles coming fourth in the ranking of product category which cause the greatest environmental impact”(1)
The carcinogenic properties of Azodye precursors and degradation products (such as aromatic amines are exacerbated by the low susceptibility for azodye bio-degradation under aerobic conditions, stressing an existing environmental burden on fresh water resources, reaching 20% in 2010 (2).
Furthermore, growing concerns regarding water consumption in textile processes due to astronomical usage of ‘potable industrial water’(6). According to the 2010 global market report on sustainable textiles, the world used three trillion gallons of fresh water to produce 60 billion kilograms of fabric. With over 80000 tonnes of reactive dyes produced and consumed each year, the heavily polluted dye baths issuing off the dyeing processes need to be treated before any reuse can be conceived(2). One such conventional method is the used of traditional large-scale membrane processes and coagulation. Implementing a water recycle strategy for a textile plant would require in-plant treatment processes(6).
- Tuller, Arnold."Environmental Impact of Products (EIPRO)(2006)" European Science and Technology Observatory
- United Nations Environment Programme (UNEP)(2004)."Textiles- Fashion that does not cost the earth".http://www.unep.fr/shared/publications/other/WEBx0008xPA/textiles.pdf
- Babu Ramesh, Parande A.K, Raghu S., Kumar Prem T.(2007)"Cotton Textile Processing: Waste Generation and Effluent Treatment". The journal of cotton science 11:141-153.
- Zaharia Carmen, Suteu Daniela(2012). "Textile organic dyes- Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents- A critical Overview.".
The overview diagram below presents the proposed layout for the plant, using an E. coli biofilm as the ‘immobilisation method’, one of the process alternatives we are considering. The synthetic E. coli immobilisation mechanism would take the same format i.e. longitudinal plates, however, we will also consider beads of the synthetic immobilising agent in a packed bed format.
Exploring process options
A Convincing Case for Immobilisation
The immobilised enzyme format boasts superior overall handling properties and operating efficiencies with respect to the alternative; a free floating system. It is characterised by the retention of a biologically active catalyst within a reactor or analytical system. The standard principle of biocatalyst immobilisation involves an insoluble complex on a specialised module, facilitating the controlled enzymatic reaction of a permeating mobile phase. Whilst adopting the physical characteristics of the support matrix, enzymes/whole-cells retain their catalytic functionality. Below are some benefits of choosing to immobilize over a free-floating mode.1. Catalyst Retention
Catalyst retention provides a huge decrease in the losses of valuable catalyst into product streams. These losses are exponential in ‘free biocatalysts’ systems, and economically unfeasible when using costly enzymes.
2. Contact Time
Higher biocatalyst concentrations lead to improved ‘activity per unit volume’ of reactor, therefore reducing required contact time to achieve equal conversions (see figure 1.4) and hence providing superior efficiency. The graph on the left shows that to achieve a given conversion, required retention time for an immobilised system is lower than for a free-floating system
3. Minimised Contamination
Minimised Contamination of product streams, eliminating the requirement for subsequent protein deactivation and further downstream processing. This aspect is especially important for recombinant organisms.
4. Flow rates
Flow-rates are not limited by a threshold critical value for “biomass washout”, and only impact substrate-catalyst contact time. Catalyst concentrations can remain steady through independence of the dilution rate (see figure 1.3). High volumetric flow-rates can enhance mass transfer and speed up the removal of inhibitors (e.g. Azo-dye metabolites) from the system.
Biofilms as a process option
Biofilms are complex networks of cells and their extracellular secretions. They allow bacterial communities to adhere to solid surfaces and thereby can act as a method for immobilization of cells. Traditionally biofilm formation was considered a hindrance as it was associated with various pathogenic bacteria and slime formation in pipes. However, biofilms are now being looked at as useful tools for the immobilization of bacterial colonies in bioprocessing.
There are several advantages for using biofilms instead of free-floating, planktonic cells for bioremediation purposes:
1. Cells within a biofilm tend to be more stress resistant due to the fact that they are protected within the exo-polysaccharide (EPS) matrix. They can therefore withstand shear forces, nutrient deprivation, pH changes and antibiotics
2. The secretion of polymers for biofilm formation causes increase in biomass and a corresponding increase in local concentrations and availability of substrate through bioaccumulation, biosorption and biomineralization. This makes biofilms better suited to bioremediation of recalcitrant compounds (such as azo-dyes)
3. In the context of a synthetic organism making up the biofilm and being used for a specific purpose, it might be useful that the efficiency of transformation within a biofilm is several fold greater than that of planktonic cells. Thus, plasmids containing genes of choice could potentially be transformed into cells after biofilm formation is complete.
4. Lower operational costs than immobilizing cells on an artificial matrix or having to purify the protein out of the cells
Some drawbacks may also be noted:
1. Overproduction of EPS can hinder efficiency of production by lowering mass transfer which decreases yield or sloughing off in a bioreactor complicating any purification that may be necessary
2. Biofilms are complex microenvironments and can have a high level of heterogeneity. Their formation is affected by several factors including the environment, quorum sensing and differential gene expression which may not be available in most lab strain bacteria
3. Biofilm formation can take up to a few weeks as illustrated by the timeline diagram below. However, there may be some alternatives to speeding up the process. For instance, biofilms engineered from E. coli PHL644 strain mature faster than their naturally occurring counterparts (Winn et. al., 2012).
Currently, biofilms are being used in certain types of bioreactors for varied purposes including remediation of chlorophenols, heavy metals and azo-dyes. Types of bioreactors using biofilms that have been used in azo-dye remediation:
Lab-scale rotating drum biofilm reactor | Lab-scale activated sludge unit |
Bioreactor Design
During the fermentation stage, the host organism (E. coli) is grown to reach a sufficient biomass, expressing the intracellular enzyme Bacillus Subtilis dye decolorizing peroxidase (BsDyP). By combining information on textile azodye outputs and assuming a typical strain volumetric productivities for the culture, a batch process was found to be sufficient. In a batch fermentation, all the substrates necessary for growth are added in the beginning with the inoculated culture. The concentrations of these substrates in the medium are required in specific concentrations to ensure targeted cell density cultures and maximize yield. The seed culture for the fermentation is started by growing an isolated colony in a shake flask containing a medium such as SD-7 and glucose. Consequently, inoculating overnight at 37 degrees on an orbital shaker yields the fermenter inoculum.
Where: Ht is the total height of tank Ha is the aerated liquid height Hu is the unaerated liquid height Di is the impeller diameter Dtis the total diameter of the tank dis the baffle length Z,Y,W and Vrepresent the typical distances between the Rushton impeller |
Ensuring optimal mixing conditions is key to providing growing cells with sufficient nutrients and oxygen alongside minimizing undesirable concentration gradients in the bulk medium such as toxic metabolites. Furthermore, mixing facilitates heat transfer as well as the maintenance of adequate oxygen transfer and pH. However, due to nature of turbine agitation, mechanical damage to the cells could result in unfavourable losses in product titres. To prevent vortexing in the bioreactor, baffles are usually fitted onto the lining of the vessel. Similarly, impeller spacing is key in ensuring that the correct flow conditions are present. |
Design of immobilization unit
After the fermentation stage, the E. coli biomass is dispersed in a liquor also containing various byproducts. A concentration step could be beneficial to reduce volumes in the next stage. However, capital costs of such unit operations would not be attractive to potential dyeing companies deciding to acquire the entire system. The subsequent modules are equipped to handle large volumes and operate in continuous-flow mode with intermittent discharges. By controlling residence time and operating flow rates, it will be possible to achieve a cell recovery deemed efficient. These will be then immobilized onto the surface of the plates within the modules. There exists a wide range of immobilization strategies used for biological wastewater treatment and this is what gives the unit its modular character. By supporting a number of immobilization methods without changing the hardware, the module allows for the enzymatic breakdown of a wide range of recalcitrant chemicals that might be financially and environmentally costly to treat using conventional methods.
Top view of the module with Azodye feed pipe (red) and aeration inlets for the plates (green).
Conclusions
This system is designed.
- Ilgi Karapinar Kapdan, F. K. (2002). Simultaneous Degradation and Adsorption of Textile Dyestuff in an Activated Sludge Unit. Process Biochemistry, 973-981.
- Michael Winn, J. F. (2012). Biofilms and Their Engineered Counterparts: A new generation of immobilised biocatalysts. Catalysis Science and Technology, 1544-1547.
- Rajbir Singh, D. P. (2006). Biofilms: Implications in Bioremediation. Trends in Microbiology, 389-396.
- Sethi Sonia, Subhum, Malviya M. Mukesh et al.(2012). Biodecolorization of Azodye by Microbial isolates from textile effluent and sludge. Universal Journal of Environmental research and technology. Vol. 2, issue 6:582-590.
Future trends
This versatile and simple process offers a wide range of future developments into various chemical producing sectors. It would be possible to use this technology in parallel with different industries as a form of platform technology using different synthetic biology anchors, in order to detoxify various effluent polluting chemicals.
Above are some examples of the microfluidics devices developed by our team for use in the lab at the UCL ACBE. The devices are initially designed using AutoCAD (2D and 3D computer-aided design software), once the designs are finalised they can be 3D-printed using the facilities provided by the UCL Institute of Making and UCL ACBE; allowing our bioprocess and laboratory team to experiment and improve designs.
An example of one of our microfluidic devices designed on AutoCAD can be downloaded here. This device utilises the basic concept of mixing the cells and dyes, producing a single output stream; much alike to the bioprocessing concept. During the course of designing the microfluidic device, several key considerations must be taken into account: ability to withstand high pressure without leakage; materials of construction to be inert and transparent; size constraints of inlet and outlet piping; ability to accurately 3D-print the device.
Why Bioprocessing?
Bioprocess engineering is a conglomerate of fields and is extensively employed to optimize a variety of production processes. In order to cope with market forces, industries for example the pharmaceutical, have had to considerably improve their bioprocessing tools and techniques. As a result a range of novel process alternatives have been developed to harness product-specific properties, each bearing benefits, disadvantages and costs. While these can be used to drive financial returns, biological processing is becoming a gateway to eco-friendly alternatives for the treatment of recalcitrant wastewater such as industrial effluents. By providing more flexibility in supporting efficient degradation of toxic compounds and having lower operating costs, the biological treatment process brings forward key advantages over it's traditional counterpart.
A typical bioprocess involves the fermentation of a stock culture (e.g. E. coli) at a small scale which is subsequently scaled up to suitable production capacities. The products from the fermentative stages are consequently separated and purified using a variety of unit operations designed to exploit the orthogonal properties of desired products. These can then be formulated into their ultimate delivery form.
The design of a successful bioprocess requires careful analysis of the many factors that impact choice of design parameters and process variables. It is crucial to consider the cost of the process at each stage to assess it's large scale feasibility.
Let's look at an example bioprocess
1. Upstream: Production bioreactor preceded by small-scale seed fermenters
2. Downstream: constitutes of three main stages
- Recovery relates to primary unit operations i.e. centrifugation and filtrations. The main goal is to concentrate the desired compound within the process stream by reducing volumes and removing fermentation byproducts.
- Purification involves unit operations such as chromatography, crystallization and ultrafiltration. The final stages are necessary to ensure purity requirements are met.
- Formulationinvolves the integrating of the product into the target delivery route followed by packaging and storage.