Team:StanfordBrownSpelman/Cellulose Acetate
From 2014.igem.org
(Difference between revisions)
Line 86: | Line 86: | ||
<div class="row"> | <div class="row"> | ||
<div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/b/b7/Bdoughty_10-16-14_BC_BCOAC.png"><br> | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/b/b7/Bdoughty_10-16-14_BC_BCOAC.png"><br> | ||
- | <h6><center>Cellulose on the left transformed into cellulose acetate on the right.</center></h6> | + | <h6><center>Fig. 1: Cellulose on the left transformed into cellulose acetate on the right.</center></h6> |
</div></div> | </div></div> | ||
<div class="row"> | <div class="row"> | ||
Line 94: | Line 94: | ||
<div class="row"> | <div class="row"> | ||
<div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/0/0d/Bdoughty_10-16-14_wssFGHI_chart.png"><br> | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/0/0d/Bdoughty_10-16-14_wssFGHI_chart.png"><br> | ||
- | <h6><center>Acetylation genes. Image via [7].</center></h6> | + | <h6><center>Fig. 2: Acetylation genes. Image via [7].</center></h6> |
</div></div> | </div></div> | ||
<div class="row"> | <div class="row"> | ||
Line 101: | Line 101: | ||
</div> | </div> | ||
<div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/5/54/Bdoughty_10-16-14_pUCD4_schematic.png"><br> | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/5/54/Bdoughty_10-16-14_pUCD4_schematic.png"><br> | ||
- | <h6><center><b> | + | <h6><center>Fig. 3:<b>Note—</b> pUCD4 differs from pUCD2 in only one restriction site.</center></h6> |
</div> | </div> | ||
Line 121: | Line 121: | ||
</h6> | </h6> | ||
</div></div> | </div></div> | ||
- | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/a/a5/Bdoughty_10-16-14_wssFGHI_gel_image.png"> | + | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/a/a5/Bdoughty_10-16-14_wssFGHI_gel_image.png"><br> |
+ | <h6><center>Fig. 4: Proof of amplification of the acetylation machinery from <i>P. fluorescens.</i></center></h6> | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
Line 127: | Line 128: | ||
<h6>The prefix and suffix were added onto these PCR products, and then they were inserted (separately) into pSB1C3 for biobricking (<a href="https://2014.igem.org/Team:StanfordBrownSpelman/BioBricks#CA" target="_blank">see Submitted Bricks</a>).</h6> | <h6>The prefix and suffix were added onto these PCR products, and then they were inserted (separately) into pSB1C3 for biobricking (<a href="https://2014.igem.org/Team:StanfordBrownSpelman/BioBricks#CA" target="_blank">see Submitted Bricks</a>).</h6> | ||
</div></div> | </div></div> | ||
- | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/3/3b/Bdoughty_10-16-14_wssF_sequencing_alignment.png"> | + | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/3/3b/Bdoughty_10-16-14_wssF_sequencing_alignment.png"><br> |
+ | <h6><center>Fig. 5: wssF sequencing alignment.</center></h6> | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
Line 133: | Line 135: | ||
<h6>We were also able to show that the pUCD4 shuttle vector was effective in making <i>G. hansenii</i> a suitable chassis for carrying synthetic information, an important step in the process of studying cellulose derivate polymers. By plating both transformed and untransformed cells on antibiotic selection plates and using colony PCR to screen for the presence of the plasmid, we found that pUCD4 was effective at providing resistances to multiple antibiotics.</h6> | <h6>We were also able to show that the pUCD4 shuttle vector was effective in making <i>G. hansenii</i> a suitable chassis for carrying synthetic information, an important step in the process of studying cellulose derivate polymers. By plating both transformed and untransformed cells on antibiotic selection plates and using colony PCR to screen for the presence of the plasmid, we found that pUCD4 was effective at providing resistances to multiple antibiotics.</h6> | ||
</div></div> | </div></div> | ||
- | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/d/d3/Bdoughty_10-16-14_pUCD4_verification_gel.jpg"> | + | <div class="small-7 small-centered columns"><br><center><img src="https://static.igem.org/mediawiki/2014/d/d3/Bdoughty_10-16-14_pUCD4_verification_gel.jpg"><br> |
+ | <h6><center>Fig. 6: pUCD4 verification gel.</center></h6> | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
Line 141: | Line 144: | ||
</div></div> | </div></div> | ||
<div class="small-7 small-centered columns"><br><center><img src=https://static.igem.org/mediawiki/2014/0/0f/Sbs_igem_cellulosedrying.jpg><br> | <div class="small-7 small-centered columns"><br><center><img src=https://static.igem.org/mediawiki/2014/0/0f/Sbs_igem_cellulosedrying.jpg><br> | ||
- | <h6><center> | + | <h6><center>Fig. 7: Production of dried cellulose. a) A wet cellulose sheet, soaking in 50% alcohol solution. b) The cellulose was placed between two acrylic gel casters and left in a 75ºC oven for 2 days. c) A thin, dry cellulose sheet. d) Fungal mycelium wrapped in dry cellulose.</center></h6> |
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
Line 150: | Line 153: | ||
</div></div> | </div></div> | ||
<div class="small-7 small-centered columns"><br><center><img src=https://static.igem.org/mediawiki/2014/f/f9/Sbs_igem_cellulosesilverdrawing.jpg><br> | <div class="small-7 small-centered columns"><br><center><img src=https://static.igem.org/mediawiki/2014/f/f9/Sbs_igem_cellulosesilverdrawing.jpg><br> | ||
- | <h6><center> | + | <h6><center>Fig. 8: Making cellulose electrically conductive. a) The silver ink used to paint cellulose. b) Silver nano particles painted onto cellulose covered mycelium. c) Positive Control: Aluminum foil has a resistance of 0.5 ohms. d) Negative Control: Unaltered cellulose has no resistance, and thus no conductivity. e) Experimental: Cellulose painted with silver nano particles has a resistance of 1.6 ohms. </center></h6> |
</div> | </div> | ||
<br> | <br> |
Revision as of 03:49, 17 October 2014