Team:Yale/Project
From 2014.igem.org
Line 165: | Line 165: | ||
Because biofilm formation affects both organic and inorganic substrates, the anti-biofilm coating should show strong adhesion to a variety of surfaces. Mussel adhesive proteins (MAPs), which are secreted by the mussel to help it anchor and survive in the harsh conditions of the intertidal zone, would be ideal for this application. MAP adhesion has been well-characterized and has been investigated in biomimetic adhesive applications in the past. We intend to broaden the scope of their application by looking at their inclusion in the first anti-biofilm adhesive recombinant protein.<sup>3</sup> </ul> | Because biofilm formation affects both organic and inorganic substrates, the anti-biofilm coating should show strong adhesion to a variety of surfaces. Mussel adhesive proteins (MAPs), which are secreted by the mussel to help it anchor and survive in the harsh conditions of the intertidal zone, would be ideal for this application. MAP adhesion has been well-characterized and has been investigated in biomimetic adhesive applications in the past. We intend to broaden the scope of their application by looking at their inclusion in the first anti-biofilm adhesive recombinant protein.<sup>3</sup> </ul> | ||
<li><strong>Anti-Microbial Domain</strong> <ul><li> | <li><strong>Anti-Microbial Domain</strong> <ul><li> | ||
- | As our anti-microbial domain, we selected LL-37, a member of the cathelicidin family of peptides, due to the potency of its lipid bilayer disruption by toroidal pore formation. Because this peptide is toxic to the E. | + | As our anti-microbial domain, we selected LL-37, a member of the cathelicidin family of peptides, due to the potency of its lipid bilayer disruption by toroidal pore formation. Because this peptide is toxic to the <i>E. coli</i> in which we intend to produce it, we designed a controlled, inducible system that limits basal expression. A novel T7 riboregulation system that controls expression at both the transcriptional and translational levels was designed. This improved system is a precise synthetic switch for the expression of cytotoxic substances.<sup>4,5</sup> </ul> |
- | <li><strong>Environmental Concerns</strong> <ul><li> Concerns of environmental toxicity often arise in materials being investigated for anti-fouling activity such as copper paints and Muntz metal. Therefore, we set out to develop an anti-fouling coating with strong adhesive activity to limit leachants into the environment. Additionally, the selection of | + | <li><strong>Environmental Concerns</strong> <ul><li> Concerns of environmental toxicity often arise in materials being investigated for anti-fouling activity such as copper paints and Muntz metal. Therefore, we set out to develop an anti-fouling coating with strong adhesive activity to limit leachants into the environment. Additionally, the selection of a MAP, found in a biological organism, as our adhesive domain is crucial to maintaining the soundness of our product's eco-friendliness. |
</p> | </p> | ||
</td> | </td> | ||
Line 181: | Line 181: | ||
<ol type="I"><li><strong>Control expression of anti-microbial peptides:</strong><ul style="list-style-type:square"> <li> | <ol type="I"><li><strong>Control expression of anti-microbial peptides:</strong><ul style="list-style-type:square"> <li> | ||
- | Since we intend to synthesize an anti-microbial peptide, it is possible that the peptide will be toxic to the E. coli used in our synthetic route. To improve our overall protein yield, we designed a plasmid with specific locks in place to control expression of the T7 RNA polymerase, an RNA polymerase from the T7 bacteriophage. When the T7 RNA polymerase is expressed, it can then specifically target the T7 Promoter located in a different plasmid upstream of our coding sequence, initiating protein translation. The specific mechanism of our T7 riboregulation system is outlined in a section below.<sup>6,7</sup> </ul> | + | Since we intend to synthesize an anti-microbial peptide, it is possible that the peptide will be toxic to the <i>E. coli</i> used in our synthetic route. To improve our overall protein yield, we designed a plasmid with specific locks in place to control expression of the T7 RNA polymerase, an RNA polymerase from the T7 bacteriophage. When the T7 RNA polymerase is expressed, it can then specifically target the T7 Promoter located in a different plasmid upstream of our coding sequence, initiating protein translation. The specific mechanism of our T7 riboregulation system is outlined in a section below.<sup>6,7</sup> </ul> |
<li> | <li> | ||
<strong> Modular construct design: </strong> <ul><li> | <strong> Modular construct design: </strong> <ul><li> | ||
Line 247: | Line 247: | ||
<strong>An improved T7 Riboregulation System</strong> | <strong>An improved T7 Riboregulation System</strong> | ||
<br /> | <br /> | ||
- | We can create novel anti-biofouling peptides with non-standard amino acids through the process of orthogonal translation in genetically recombined organisms (GRO), such as E.coli. However, these peptides will be potentially toxic to the GRO that they are made in, so it is first necessary to develop a tightly controlled expression system. In this way, we are improving the expression system for all toxic proteins and, in the process, developing anti-biofouling peptides. | + | We can create novel anti-biofouling peptides with non-standard amino acids through the process of orthogonal translation in genetically recombined organisms (GRO), such as <i>E.coli</i>. However, these peptides will be potentially toxic to the GRO that they are made in, so it is first necessary to develop a tightly controlled expression system. In this way, we are improving the expression system for all toxic proteins and, in the process, developing anti-biofouling peptides. |
<br/> | <br/> | ||
Thus, we first sought to develop a controlled T7 Expression System. The current BL21 (DE3) strain is leaky due to the weak suppressing promoter lacUV5 that drives T7 RNA polymerase in the DE3 strains. As a result, low levels of toxic protein are constitutively expressed, ultimately killing the host it was made in and in turn lowering the overall yield of the protein produced. | Thus, we first sought to develop a controlled T7 Expression System. The current BL21 (DE3) strain is leaky due to the weak suppressing promoter lacUV5 that drives T7 RNA polymerase in the DE3 strains. As a result, low levels of toxic protein are constitutively expressed, ultimately killing the host it was made in and in turn lowering the overall yield of the protein produced. |
Revision as of 02:28, 17 October 2014
Ampersand: an Anti-Microbial Peptide Coating |
|||||||||||
The ProblemA biofilm is a community of bacteria attached to a surface that exhibit high resistance to antibiotics and human immunity. Biofilm formation poses a serious threat to the medical and shipping industries in the following ways:
| |||||||||||
Our SolutionTo address this issue, we aimed to develop an anti-microbial adhesive peptide composed of two components, which we envision can be modulated to suit a variety of functional adhesive applications:
|
|||||||||||
Project Goals
|
|||||||||||
Introduction
Biofilm formation: A problem in clinics and cargo ships
An improved T7 Riboregulation System
A DOPA-containing peptide derived from mussel foot protein
Anti-biofouling Peptide: LL-37 |
|||||||||||
Materials and Methods | |||||||||||
Results | |||||||||||
References
|