Team:Toulouse/Project/Fungicides

From 2014.igem.org

(Difference between revisions)
Line 91: Line 91:
<center><img style="width:700px; " src="https://static.igem.org/mediawiki/2014/0/0c/Recap_fungicides.jpg">
<center><img style="width:700px; " src="https://static.igem.org/mediawiki/2014/0/0c/Recap_fungicides.jpg">
-
<br><br>
+
<br>
-
<p class="legend">Figure n°1: Scheme of the fungicide module</p></center>
+
<p class="legend">Figure 1: Scheme of the fungicide module</p></center>
         <p class="textesimple">The main objective of SubtiTree is to ensure the <b> destruction of the pathogenic fungi </b> inside the tree. In order to achieve this goal, we built a genetic module to produce three different peptides with antifungal activities. </p> <br>
         <p class="textesimple">The main objective of SubtiTree is to ensure the <b> destruction of the pathogenic fungi </b> inside the tree. In order to achieve this goal, we built a genetic module to produce three different peptides with antifungal activities. </p> <br>
Line 107: Line 107:
</p>
</p>
<br>
<br>
-
<p class="title1" style="margin-top:30px;">More information on this module </p>
+
<p class="title1" style="margin-top:30px;">More information about this module </p>
<p  class="texte">
<p  class="texte">
We built different genetic constructions to test each fungicide separately and to test them all together on the same operon where the three genes coding for the antifungal peptides are placed under the control of the constitutive promoter P<sub>veg</sub> in <i>Bacillus subtilis</i>.</p>
We built different genetic constructions to test each fungicide separately and to test them all together on the same operon where the three genes coding for the antifungal peptides are placed under the control of the constitutive promoter P<sub>veg</sub> in <i>Bacillus subtilis</i>.</p>
-
<img style="width:930px; float:left; margin: 30px 0 45px;" src="https://static.igem.org/mediawiki/parts/d/d0/Fungicideprod.jpg">  
+
<center><img style="width:930px; float:left; margin: 30px 0 45px;" src="https://static.igem.org/mediawiki/parts/d/d0/Fungicideprod.jpg"> <br>
 +
<p class="legend">Figure 2: Fungicide operon</p></center>
-
<p  class="texte">EcAMP-1 was already present in the Registry, added by the Utah State 2013 iGEM team (<a href="http://parts.igem.org/Part:BBa_K1162001"_blank">BBa_K1162001</a>). This part has been modified and improved by our team (<a href="http://parts.igem.org/Part:BBa_K1364019"_blank">BBa_K1364019</a>).  We added D4E1 and GAFP-1 to the Registry of Standard Biological Parts (see <a href="https://2014.igem.org/Team:Toulouse/Result/parts"_blank">Parts</a>). These new BioBricks were designed in order to be expressed and secreted with <i>Bacillus subtilis</i>.   
+
<p  class="texte">EcAMP-1 was already present in the Registry, added by the Utah State 2013 iGEM team (<a href="http://parts.igem.org/Part:BBa_K1162001"_blank">BBa_K1162001</a>). This part has been modified and improved by our team (<a href="http://parts.igem.org/Part:BBa_K1364019"_blank">BBa_K1364019</a>).  <br>We added D4E1 and GAFP-1 to the Registry of Standard Biological Parts (See <a href="https://2014.igem.org/Team:Toulouse/Result/parts/Submitted_parts"_blank">Submitted parts</a>). <br>These new BioBricks were designed in order to be expressed and secreted with <i>Bacillus subtilis</i>.   
</p>
</p>
<br>
<br>
Line 121: Line 122:
<center><img style="width:400px; " src="https://static.igem.org/mediawiki/2014/2/2e/Secretion.jpg">
<center><img style="width:400px; " src="https://static.igem.org/mediawiki/2014/2/2e/Secretion.jpg">
-
<img style="width:400px; " src="https://static.igem.org/mediawiki/2014/d/d7/Fongpep.jpg"></center>
+
<img style="width:400px; " src="https://static.igem.org/mediawiki/2014/d/d7/Fongpep.jpg">
 +
<br><p class="legend">Figure 3: Design of GAFP-1 and D4E1</p></center>
<br>
<br>
-
<br>
 
-
 
<p  class="title1">References</p>
<p  class="title1">References</p>
<ul>
<ul>
-
<li class="tree"><p class="texte">A.J De Lucca, J.M Bland, C. Grimm, T.J Jacks.<b> Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1 </b>. Canadian Journal of Microbiology. 1998, Vol. 44:514-520. </p></li>
+
<li class="tree"><p class="texte">A. J De Lucca, J.M Bland, C. Grimm, T.J Jacks.<b> Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1 </b>. Canadian Journal of Microbiology. 1998, Vol. 44:514-520. </p></li>
<li class="tree"><p class="texte">Kanniah Rajasekaran, Kurt D. Stromberg, Jeffrey W. Cary, and Thomas E. Cleveland.<b> Broad-Spectrum Antimicrobial Activity in vitro of the Synthetic Peptide D4E1</b>. J. Agric. Food Chem. 2001, Vol. 49, 2799-2803.</p></li>
<li class="tree"><p class="texte">Kanniah Rajasekaran, Kurt D. Stromberg, Jeffrey W. Cary, and Thomas E. Cleveland.<b> Broad-Spectrum Antimicrobial Activity in vitro of the Synthetic Peptide D4E1</b>. J. Agric. Food Chem. 2001, Vol. 49, 2799-2803.</p></li>
<li class="tree"><p class="texte">M. Visser, D. Stephan, J.M. Jaynes and J.T. Burger.<b> A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens</b>. Letters in Applied Microbiology. 2012, Vol. 54, 543–551.</p></li>
<li class="tree"><p class="texte">M. Visser, D. Stephan, J.M. Jaynes and J.T. Burger.<b> A transient expression assay for the in planta efficacy screening of an antimicrobial peptide against grapevine bacterial pathogens</b>. Letters in Applied Microbiology. 2012, Vol. 54, 543–551.</p></li>

Revision as of 14:02, 16 October 2014