Team:ITB Indonesia/DegMod
From 2014.igem.org
(Difference between revisions)
Mardikusumo (Talk | contribs) |
Mardikusumo (Talk | contribs) |
||
Line 190: | Line 190: | ||
<li><a href="https://2014.igem.org/Team:ITB_Indonesia/RepMod">REPORTER MODULE</a></li> | <li><a href="https://2014.igem.org/Team:ITB_Indonesia/RepMod">REPORTER MODULE</a></li> | ||
<li><a href="https://2014.igem.org/Team:ITB_Indonesia/SelfMod">SELF REGULATORY MODULE</a></li> | <li><a href="https://2014.igem.org/Team:ITB_Indonesia/SelfMod">SELF REGULATORY MODULE</a></li> | ||
+ | <li><a href="https://2014.igem.org/Team:ITB_Indonesia/FutureSystem">FUTURE SYSTEM</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 206: | Line 207: | ||
<li>NOTEBOOK | <li>NOTEBOOK | ||
<ul> | <ul> | ||
- | |||
<li><a href="https://2014.igem.org/Team:ITB_Indonesia/nb-wetlab">WETLAB</a></li> | <li><a href="https://2014.igem.org/Team:ITB_Indonesia/nb-wetlab">WETLAB</a></li> | ||
</ul> | </ul> |
Revision as of 06:00, 16 October 2014
Degradation Module
Team ITB_Indonesia tries to make a module to degrade PET. We use LC-Cutinase fused with ompA and Lpp signal sequence. LC-Cutinase will break the ester bonds on PET structure through esterase activity of the enzyme and generate ethylene glycol and terephthalic acid as product. We plan to expose this enzyme on the surface membrane of bacteria thus making the enzyme immobile and more thermostable. On the other hand, PET which has high molecular mass can be degraded directly without need to pass through bacteria cell membrane. This molecular machine then named as whole cell biocatalyst.