Team:Minnesota/Templates
From 2014.igem.org
(Difference between revisions)
Line 475: | Line 475: | ||
<div class="slide" id="slide1" data-anchor="slide1"> | <div class="slide" id="slide1" data-anchor="slide1"> | ||
<br><br><br><br> | <br><br><br><br> | ||
- | <img src="https://static.igem.org/mediawiki/2014/d/ | + | <img src="https://static.igem.org/mediawiki/2014/d/dd/TheProblemSlide2.png" alt = "logo" height = 65% width=60%> |
<h3><br><br> | <h3><br><br> | ||
Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. | Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. | ||
Line 482: | Line 482: | ||
<div class="slide" id="slide2" data-anchor="slide2"> | <div class="slide" id="slide2" data-anchor="slide2"> | ||
<br><br><br><br> | <br><br><br><br> | ||
- | <img src="https://static.igem.org/mediawiki/2014/ | + | <img src="https://static.igem.org/mediawiki/2014/0/05/TheSituationSlide2.png" alt = "logo" height=65% width=60%> |
<h3><br><br> | <h3><br><br> | ||
Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. | Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. | ||
Line 488: | Line 488: | ||
<div class="slide" id="slide3" data-anchor="slide3"> | <div class="slide" id="slide3" data-anchor="slide3"> | ||
<br><br><br><br> | <br><br><br><br> | ||
- | <img src="https://static.igem.org/mediawiki/2014/ | + | <img src="https://static.igem.org/mediawiki/2014/c/ce/TheChallengeSlide2.png" alt = "logo" height=65% width=60%> |
<h3><br><br> | <h3><br><br> | ||
Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. | Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. | ||
Line 494: | Line 494: | ||
<div class="slide" id="slide4" data-anchor="slide4"> | <div class="slide" id="slide4" data-anchor="slide4"> | ||
<br><br><br><br> | <br><br><br><br> | ||
- | <img src="https://static.igem.org/mediawiki/2014/ | + | <img src="https://static.igem.org/mediawiki/2014/d/d7/TheSolutionSlide2.png" alt = "logo" height=65% width=60%> |
<h3><br><br> | <h3><br><br> | ||
Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. | Mercury is a neurotoxic heavy metal with the ability to biomagnify, therefore it is a significant issue in public health and environmental studies worldwide. Its levels are continually on the rise due to copper, nickel, and gold mining activities, the industrial use of mercury catalysts, mercurial fungicides in agriculture, and the burning of fossil fuels. This has resulted in the pollution of many marine ecosystems and water reservoirs worldwide, the cleanup of which using current technology, is either not feasible or incredibly costly. This study describes the use of engineered recombinant bacteria to facilitate the biological remediation of the neurotoxin methylmercury and hazardous mercury ions from an aquatic target site into less toxic form. This synthetic microbe was incorporated in novel encapsulation technology within a cost-effective, scalable water filtering column. The employment of this device could rigorously change the practices used in mercury decontamination efforts as well as pave the way for the switch to biological rather than chemical processes. Furthermore, this technology can be applied towards bioremediation and biosensing of various other heavy metals and organic toxins in the environment. |
Revision as of 04:45, 16 October 2014
MNtallica: Cleaning Up Heavy Metal!
Attributions
Wet Lab:
Mercury Project design:
Basem, Aunica,
Mercury ion Testing:
Aunica, Sarah, Cassandra, Camilo, Srijay, Jennifer, Suzie
Methylmercury testing:
Nater Lab, Aunica, Nicholas, Srijay, Patrick, Suzie, Basem
Cadmium, Zinc, Copper project design:
Basem, Stephen, Aunica
Cadmium, Zinc, Copper Testing:
Aunica, Cassandra, Jessica ???
Kill Switch Proposal:
David, Sarah, Camilo, Stephen, Basem
pDU1358 received from Dr. Anne O. Summers, University of Georgia
pSB74 received through addgene from Keasling Lab
Composite parts:
mer operon:
Primer design: Basem, Stephen
Parts cloning: Basem, Jennifer, Stephen, Valeriu
phsABC:
Primer design: Basem, Stephen
Parts cloning: Basem, Stephen, Valeriu
Single parts:
merR:
Primer design: Basem, Stephen
Parts cloning: Cassandra
merT:
Primer design: Stephen, Basem
Parts cloning: Sarah, Jennifer
merP:
Primer design: Basem, Stephen
Parts cloning: Camilo, Logan
merA:
Primer design: Stephen, Basem
Parts cloning: Valeriu, Jessica
Characterization: Cassandra, Sarah
merB:
Primer design: Basem, Stephen
Parts cloning: Logan, David
Chassis Transformations:
Pseudomonas putida: Basem
Shewanella oneidensis: Basem
E. coli K12: Basem, David
Rhodopseudomonas
Project design: Basem, Stephen
Parts cloning: Stephen, Basem
Dry lab:
EncapsuLab:
Protocol Design: Srijay, Patrick, David, Nicholas
Cell encapsulation: Nicholas, Patrick, Srijay, David, Basem, Suzie
Cell Viability Testing: Patrick, David, Nicholas
SEM encapsulation imaging: Nicholas, UofM imaging center
Device design: Roxana, Nicholas
Mathematical modelling: Di, Zhiyi, Patrick, David
Policies and Practices:
Outreach, presentations, public perception studies
School Curriculum design: Basem, Suzie
Science Museum Curriculum Design: everybody
Middle School Classroom outreach: Jess, Basem, Cassandra, Jennifer, Suzie
Science Museum outreach: Jess, Jen, David, Sarah, Cassandra, Basem, Srijay, Di, Holly, Logan
3M presentation: Suzie, Basem, Cassandra, Stephen, Jess
Cargill presentation: ???
State Fair outreach:
tabling & survey: Cassandra Taylor Jess Jen Basem Suzie Nicholas Stephen Roxana Di
Srijay Patrick Holly Logan
Survey statistics: Taylor
slideshow: Jess, David, Logan
giveaways: CBS, local businesses gift cards, Rob Rakow
survey content: everyone
State Fair game show presentation: Cassandra, Taylor
Ethics :
blog: Basem, Cassandra, Logan, Jen
Documentary: Jennifer, David, Colombia iGEM team
Business Plan:
Justin, Tanner, Basem, Tamara, ?
Economic Analysis: ??? + IP team at OTC
Colombia collaboration: (magnetic stirrer) Stephen
Other collaborations??
Wiki development
Design: Mari, Chris, Aaron, Basem, ??
Icons, figures development: Mari, Basem, Nicholas, ???
Coding, CSS, javascript: Aaron, Chris,
Lab notebook: Sarah Lucas
Poster:
Basem
Team Logo
Nicholas
Administrative forms, IP, safety:
Basem
Parts Submission form & shipping
Stephen
Public relations and team contact
Basem, Jessica
Grant writing, fundraising
Basem, Jess, David, Cassandra
Sponsors
-
Platinum
-
Gold
-
Silver